首页 同济第六版高数答案(高等数学课后习题解答)3.

同济第六版高数答案(高等数学课后习题解答)3.

举报
开通vip

同济第六版高数答案(高等数学课后习题解答)3.同济第六版高数答案(高等数学课后习题解答)3. 习题11,8 1, 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): 112 (1), f(x),1,x(,,x,)222 解 因为f(x),1,x为偶函数~ 所以b,0(n,1~ 2~ , , ,)~ 而 n 112112222(1)4(1) a,,xdx,,xdx,~ 0,,001/26 12nx,22 a(1x)cosdx,, n,01/21/2 1n,1(,1)22,xnxdx ,4(1,)cos2,(n,1~ 2~ , , ,)~...

同济第六版高数答案(高等数学课后习题解答)3.
同济第六版高数 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 (高等 数学 数学高考答题卡模板高考数学答题卡模板三年级数学混合运算测试卷数学作业设计案例新人教版八年级上数学教学计划 课后习题解答)3. 习题11,8 1, 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 达式): 112 (1), f(x),1,x(,,x,)222 解 因为f(x),1,x为偶函数~ 所以b,0(n,1~ 2~ , , ,)~ 而 n 112112222(1)4(1) a,,xdx,,xdx,~ 0,,001/26 12nx,22 a(1x)cosdx,, n,01/21/2 1n,1(,1)22,xnxdx ,4(1,)cos2,(n,1~ 2~ , , ,)~ ,220n, 由于f(x)在(,,~ ,,)内连续~ 所以 ,n1,(1),111f(x)cos2n,x ~ x,(,,~ ,,), ,,,2212n,n1, ,x ,1,x,0, ,1f(x),1 0,x, (2), ,2,1,,1 ,x,12, 110112 解 ~ ()a,fxdx,xdx,dx,dx,,n1,,,,,,11022 11012 a,f(x)cosn,xdx,xcosn,xdx,cosn,xdx,cosn,xdx1n,,,,,1,10212n,n[1(1)]sin,,,, (n,1~ 2~ , , ,)~ 222nn,, 11012 b,f(x)sinn,xdx,xsinn,xdx,sinn,xdx,sinn,xdx1n,,,,,1,102 ,2n1,,cos, (n,1~ 2~ , , ,), n,2n, 12k,而在(,,~ ,,)上f(x)的间断点为x,2k~ ~ k,0~ ,1~ ,2~ , , ,~ 2 ,,nn2sin12cos,,n1(1),,122f(x){[]cosn,xsinn,x}故 ,,,,,,224nn,,n,n1, 1x,2k, (x,2k~ ~ k,0~ ,1~ ,2~ , , ,), 2 2x,1 ,3,x,0,f(x), (3), , 1 0,x,3, 30311 解 ~ a,f(x)dx,[(2x,1)dx,dx],,10,,,,,33033 3031nx1nxnx,,, a,f(x)cosdx,[(2x,1)cosdx,cosdx]n,,,,,33033333 6n,,, [1(1)](n,1~ 2~ , , , )~ 22n, 3031nx1nxnx,,, b,f(x)sindx,[(2x,1)sindx,sindx]n,,,,,33033333 6n,(,1) (n,1~ 2~ , , , )~ n, 而在(,,~ ,,)上~ f(x)的间断点为 x,3(2k,1)~ k,0~ ,1~ ,2~ , , ,~ ,166n,xn,xnn1,(),,,{[1,(,1)]cos,(,1)sin}故 fx~ ,22233nn,,n1, (x,3(2k,1)~ k,0~ ,1~ ,2~ , , ,), 2, 将下列函数分别展开成正弦级数和余弦级数: l, x 0,x,,2f(x), (1), ,ll,x ,x,l,2, 解 正弦级数: 对f(x)进行奇延拓~ 则函数的傅氏系数为 a,0(n,0~ 1~ 2~ , , ,)~ 0 1l24n,xn,xln,2 (n,1~ 2~ , , , ) [sin()sin]sin,,,,bxdxlxdx1n,,2202llln,2 ,lnnx41,,fx(),sinsin故 ~ x,[0~ l], ,22l2n,n1, 余弦级数: 对f(x)进行偶延拓~ 则函数的傅氏系数为 1l2l2 ~ [()],,,,axdxlxdx10,,02l2 1l2nxnx,,2 a,[xcosdx,(l,x)cosdx]1n,,0lll2 2ln,n[2cos1(1)] ,,,, (n,1~ 2~ , , , ) 222n, b,0(n,1~ 2~ , , , )~ n,llnnx21,,nfx(),,[2cos,1,(,1)]cos故 ~ x,[0~ l], ,22l42n,n1,2 (2)f(x),x(0,x,2), 解 正弦级数: 对f(x)进行奇延拓~ 则函数的傅氏系数为 a,0(n,0~ 1~ 2~ , , ,)~ 0 2,nx281621n,nbxdx,sin,(,1),[(,1),1] ~ n,30n,22n,() ,816n,xn1n,(){(1)[(1)1]}sin故 ,,,,, fx,32n(),n,n1, ,n1n,(1)2[(1)1],,,8n,x{}sin ~ x,[0~ 2), ,,,322nn,,n1, 余弦级数: 对f(x)进行偶延拓~ 则函数的傅氏系数为 2282 a,xdx,0,023 2,2nx162naxcosdx(1),,, (n,1~ 2~ , , ,)~ n,2022(n,) b,0(n,1~ 2~ , , ,)~ n,n(1)16,4n,x()cos故 fx,, ,232()n,n1, ,n(1),416n,xcos,, ~ x,[0~ 2], ,2232n,n1, 总习题十一 1, 填空: , u (1)对级数~ limu,0是它收敛的________条件~ 不是它收敛的________条件, ,nnn,,n,1 解 必要, 充分, , u (2)部分和数列{s}有界是正项级数收敛的________条件, n,nn,1 解 充分必要, ,,, uuu (3)若级数绝对收敛~ 则级数必定________, 若级数条件收敛~ 则级数,,,nnnn,1n,1n,1 , |u|必定________, ,n,1n 解 收敛, 发散, 2, 判定下列级数的收敛性: ,1 (1), ,nnnn,1 解 因为 1 n1nn ~ lim,lim,1nn,,n,,1n n ,1而调和级数发散~ 故由比较审敛法知~ 级数发散, ,nn,1 ,2(n!) (2), ,22nn,1 解 因为 22u[(n,1)!]2nn,12 lim,lim,,limn,,~ 22n,,n,,n,,u2(n,1)(n!)n 故由比值审敛法知~ 级数发散, n,2cosn,3 (3) , ,n2n,1 解 因为 ,n2ncosnn11n3n, ~ lim,limn,,1 nnnn,,n,,22222 n,2cosn,,n3所以由根值审敛法~ 级数收敛, 由比较审敛法~ 级数收敛, ,,nn22,1nn,1 ,1 (4), ,10lnnn,1 解 因为 unnlim,lim,, ~ 10n,,n,,1lnn n ,1而调和级数发散~ 故由比较审敛法知~ 原级数发散, ,nn,1 xxx11111,,,,,,,,,,limlimlim limlim提示: 109x,,x,,x,,x,,x,,111010!lnx10!lnxlnx910lnx,xx ,na (5)(a,0~ s,0), ,snn,1 解 因为 naan ~ limlim,,asns,,,,nnn()n 故由根值审敛法知~ 当a,1时级数收敛~ 当a,1时级数发散, ,1 当a,1时~ 原级数成为~ 这是p,s的p,级数~ 当s,1时级数收敛~ 当s,1时级数发散, ,snn,1 ,,,2uv(u,v) 3, 设正项级数和都收敛~ 证明级数与收敛, ,,,nnnnn,1n,1n1, ,, uvlimu,0limv,0 证明 因为和都收敛~ 所以~ , ,,nnnnn,,n,,n,1n,1 22u,2uvvnnnnlim,lim(u,2v),0lim,limv,0 又因为~ ~ nnnn,,n,,n,,n,,vunn ,,22(u,2uv)v所以级数和级数都收敛~ 从而级数 ,,nnnn,n,1n1 ,,222 [(u,2uv),v],(u,v) ,,nnnnnnn1n1,, 也是收敛的, ,,vnlim,1uv 4, 设级数收敛~ 且~ 问级数是否也收敛,试说明理由, ,,nnn,,unn,1n,1 , v 解 级数不一定收敛, ,nn,1 ,,,uvv 当和均为正项级数时~ 级数收敛~ 否则未必, ,,,nnnn,1n,1n,1 ,,111,[(,1),](1) 例如级数收敛~ 但级数发散~ 并且有 ,,nnnn1n1,, 11(,1),nn , lim,1n,,1(,1)n 5, 讨论下列级数的绝对收敛性与条件收敛性: ,1n, (1)(1), ,pnn1, ,,,,1111n,,|(1)| 解 是p级数, 故当p,1时级数是收敛的~ 当p,1时级数,,,,ppppnnnn,1,1nnn1n1,, ,1n,(1)发散, 因此当p,1时级数绝对收敛, ,pnn1, ,1n,(1) 当0,p,1时~ 级数是交错级数~ 且满足莱布尼茨定理的条件~ 因而收敛~ 这时,pnn1, 是条件收敛的, ,11nn,lim(,1),0(1) 当p,0时~ 由于~ 所以级数发散, ,ppn,,nnn1, ,1n,(1) 综上所述~ 级数当p,1时绝对收敛~ 当0,p,1时条件收敛~ 当p,0时发散, ,pnn1, ,sin,n,1n1,(,1) (2), ,n1,,n1, ,sin,111n,n,1|(1)|,, 解 因为~ 而级数收敛~ 故由比较审敛法知级数,n,1n,1n,1,,,n,1 ,sin,n1n,1,|(1)|,收敛~ 从而原级数绝对收敛, ,n1,,n1, ,n,1n (3) (,1)ln, ,n,n1 n,1n|(,1)ln|,n,111nnlim,limnln,limln(1,),lne,1 解 因为~ 而级数发散~ 故,,,,,,,nnn1nnn,1nn ,n1,n|(1)ln|由比较审敛法知级数,发散~ 即原级数不是绝对收敛的, ,nn1, ,n,1n(,1)ln 另一方面~ 级数是交错级数~ 且满足莱布尼茨定理的条件~ 所以该级数收,n,n1 敛~ 从而原级数条件收敛, ,(n,1)!n(,1) (4), ,n1,nn1, (,1)!nn,(,1)u 解 令, 因为 nn,1n n,1u||n(,2)!nnnn,2,211n,n1 ~ limlim,,lim,(),lim,,,1n,2n,,n,,n,,n,,1unnnne||(,1)!,1,1,1n(,1)nn(1,)n ,n(1)!,n|(1)|故由比值审敛法知级数,收敛~ 从而原级数绝对收敛, ,n1,nn1, 6, 求下列级限: n2111klim(1,) (1), ,k,,nnk3,1k n,221111nks,(1,)(1,) 解 显然是级数的前n项部分和, ,,nnkkn33,1n1k, ,22111111ennnn(1,) 因为~ 所以由根值审敛法~ 级数收lim(1,),lim(1,),,1,nn,,,,nnn333nn3n1, 敛~ 从而部分和数列{s}收敛, n n21111klim(1,),lim,s,0 因此, ,nk,,,,nnnkn31,k 1111nn39273 (2)lim[2,4,8, , , (2)], ,,n 1123n111,,,,,,, nnn39273927332,4,8, , , (2),2 解 , ,n123n 显然s,,,, , , , ,是级数的前n项部分和, ,nnn392733n,1 ,,x11nn1,,,,S(x),[S(x)dx],[x],[,1],S(x),nx 设~ 则, ,,,201,x(1,x)n1n,1,,,31111113nn1,lim,s 因为~ 所以~ 从而 ()(),n,S,,,n,,nn,,1433333432nn11,,(1),3 11113nsn39273n4 , lim[2,4,8, , , (2)],lim2,2,,,,nn 7, 求下列幂级数的收敛域: ,nn3,5nx (1), ,n,n1 3n3(),5n,1n,1a3,5nn15n,1lim||,lim,,lim,,5 解 ~ 所以收敛半径为R,, nnn,,n,,n,,3ann5,1,13,5nn(),15 ,131n[(),1] 因为当时~ 幂级数成为~ 是发散的, x,,n551n, ,n(,1)13nx,,[(),1] 当时~ 幂级数成为~ 是收敛的~ ,n551n, 11所以幂级数的收敛域为[,, ), 55 ,21nn(1,)x (2), ,nn1, 211nnnnu,(1,)xlim|u|,lim(1,)|x|,e|x| 解 ~ 因为~ 由根值审敛法~ 当e|x|,1~ 即nn,,,,nnnn11,,x,时~ 幂级数收敛, 当e|x|,1~ 时幂级数发散, ee ,2111nn(1,)() 当x,,时~ 幂级数成为, ,enen1, ,2111nnn(,1)(1,)() 当x,时~ 幂级数成为, ,neen1, 因为 11ln(1),,ln(1,t),t11xx2lim[xln(1,),x],lim,lim,, ~ 2,x,,,x,,,1t,02xt2x 112ln(1)nn,,,211nnn2lim(1,)(),lime,e,0所以 ~ n,,n,,ne ,,22111111nnnnn(,1)(1,)()(1,)()(,, )因此级数和均发散~ 从而收敛域为, ,,neneeen1n1,, ,nn(x,1) (3), ,n1,n 解u,n(x,1) , 因为 n un,1n,1lim||,lim|x,1|,|x,1| ~ n,,n,,unn 根据比值审敛法~ 当|x,1|,1~ 即,2,x,0时~ 幂级数收敛, 当|x,1|,1时~ 幂级数发散, ,,n 又当x,0时~ 幂级数成为n~ 是发散的, 当x,,2时~ 幂级数成为(,1)n~ 也是发散的~ ,,n,1n1, 所以幂级数的收敛域为(,2~ 0), ,nn2x (4), ,n2n,1 n2n, 解 ux, 因为 nn2 nun121,,1n22lim||limxx,,,, ~ ,1n,,,,nnun22n 1122根据比值审敛法~ 当x,1~ 即时~ 幂级数收敛, 当x,1时~ 幂级数发散, ,2,x,222 , n 又当时~ 幂级数成为~ 是发散的~ 所以收敛域为, (,2, 2)x,,2,n,1 8, 求下列幂级数的和函数: ,21n,2(n1),x (1), ,n2n1, 解 设幂级数的和函数为S(x)~ 则 ,,2x1xx211n,n,,,,(),[()],[],[()] SxSxdxx ,,,n022211n,n, 22x12,xx, ,[,], (,1)~ 22222x(2,x)1,2 22,xS(x), (,2,x,2)即 , 22(2,x) ,n1,(,1)2n1,x (2), ,2,1nn1, 解 设幂级数的和函数为S(x)~ 则 ,xxx11222n,n,,S(x),S(x)dx,(,1)x,dx,arctanx (x,1) , ,,,,20001,x1n, 因为当x,,1时~ 幂级数收敛~ 所以有 S(x),arctan x (,1,x,1), ,nn(x,1) (3), ,n1, 解 设幂级数的和函数为S(x)~ 则 ,,,1nn,n,S(x),n(x,1),(x,1)n(x,1),(x,1)[(x,1)] ,,,111n,n,n, ,x,1x,1n1,,,,(x,1)[(x,1)(x,1)],(x,1)[], (|x,1|,1) ~ ,21,(x,1)(2,x)n1, x,1即 , S(x), (0,x,2)2(2,x) ,nx (4), ,n(n,1)n1, 解 易知幂级数的收敛域为[,1~ 1], 设幂级数的和函数为S(x)~ 则当x,0时 ,,111nn1,(),,Sxxx ,,(,1)(,1)nnxnnn1n1,, ,,xxx1111nn,,xdx,[xdx]dx ,,,,,000xnx11nn,, xxx111 ,[dx]dx,,ln(1,x)dx,,,000x1,xx 1 ,,[xln(1,x),x,ln(1,x)] x 1,x ,1,ln(1,x)~ x,[,1~ 0),(0~ 1]~ x 又显然S(0),0~ 因此 1,x,,1,ln(1,x) x,[,1, 0),(0, 1]S(x), , x, ,0 x,0, 9, 求下列数项级数的和: ,2n (1), ,n!n,1 ,,,,2n(n1)nn(n1),,,nn,,, 解 , ,,,,n!n!n!n!n1n1nn11,,,, ,,,(1)nn,1nxn,1xn,2xne,xe,xex, 因为~ 两边求导得~ 再求导得~ 因此 ,,,!!!nnn1n,1n,2n, ,,,,,2(1)(1)nn,nn,nnnnnnnnxx2,22x,x,x,xx,x,xe,e ~ ,,,,,!!!!!nnnnnn,1nn,11,nn,21, ,2n,S(1),2e从而 , ,n!,n1 ,n,1n(,1) (2), ,(2n,1)!n0, ,,,n,112n,111nnn(,1),(,1),(,1) 解 ,,,(2n,1)!2(2n,1)!2(2n,1)!n0n0n0,,, ,,111111nn,(,1),(,1),cos1,sin1 , ,,nn2(2)!2(2,1)!2200n,n, ,,12,1nn2n1n2n,sin,(,1)cos,(,1)xxxx提示: ~ , ,,(2,1)!(2,1)!nnn0n0,, 10, 将下列函数展开成x的幂级数: 2ln(x,x,1) (1), xx122,ln(,,1),[ln(,,1)],xxxxdxdx 解 ~ ,,200,1x 1,,,(2n1)!!122n2,,x,,,x(1)1(1)因为 ~ |x|,1~ ,2(2n)!!1,x,n1 ,n(2,1)!!,2n2n1xxxxln(,,1),,(,1)故 (,1,x,1), ,nn(2)!!(2,1),n1 1 (2), 2(2,x) ,11111xn,,, 解 ,(),(),[()],2x2,222x(2,)xn0,1,2 ,,1nnn1,,[],x,x (,2,x,2), ,,n1n1,,22n0n1,, 11, 设f(x)是周期为2,的函数~ 它在[,,~ ,)上的表达式为 ,0 ,[,, 0)x,f(x), , ,xe x,[0, ,), 将f(x)展开成傅里叶级数, ,,,11e,1x 解 ~ a,f(x)dx,edx,0,,,0,,,, n,,,e(,1),111x2 ~ afxnxdxenxdxna,()cos,cos,,nn,,,0,,,, n,(,1)e,1a,即 (n,1~ 2~ , , , )~ n2(n,1), ,,11x b,f(x)sinnxdx,esinnxdxn,,,0,,, ,1x (n,1~ 2~ , , , ), ,(,n)ecosnxdx,,nan,0, n,,,(,1)e,1e,1f(x),,(cosnx,nsinx)因此 ,2,2,(n,1)n1, (,,,x,,,且x,n,~ n,0~ ,1~ ,2~ , , ,), 12, 将函数 1 0,x,h,f(x), ,0 h,x,,, 分别展开成正弦级数和余弦级数, 解 若将函数进行奇延拓~ 则傅里叶系数为 a,0(n,0~ 1~ 2~ , , ,)~ n ,hnh2(1,cos)22bfxnxdxnxdx , ,()sin,sin,n,,00,,n,因此~ 函数展开成正弦级数为 ,21cosnh,f(x)sinnx, ~ x,(0~ h),(h~ ,)~ ,,nn1, 1当x,h时~ , f(h),2 若将函数进行偶延拓~ 则傅里叶系数为 ,h222h ~ ,,,af(x)dxdx0,,00,,, ,hnh222sin (n,1~ 2~ , , ,)~ afxnxdxnxdx,,,()coscosn,,00,,n, b,0(n,1~ 2~ , , ,)~ n , 因此~ 函数展开成余弦级数为 ,h2sinnhf(x),,cosnx ~ x,[0~ h),(h~ ,)~ ,,,nn1, 1当x,h时~ f(h),, 2 总习题十二 1, 填空: 2234 (1)xy,,,,2xy,,xy,x,1是______阶微分方程, 解 是3阶微分方程, (2)若M(x~ y)dx,N(x~ y)dy,0是全微分方程~ 则函数M、N应满足______, ,M,N, 解 , ,y,x x (3)与积分方程等价的微分方程初值问题是______, y,f(x,y)dx,x0 解 方程两边对x求导得y,,f(x~ y), 显然当x,x时~ y,0, 0 因此与积分方程等价的微分方程初值问题是 y|,0 y,,f(x~ y)~ , x,x0 2 (4)已知y,1、y,x、y,x是某二阶非齐次线性微分方程的三个解~ 则该方程的通 解为______, 解 容易证明非齐次线性微分方程的任意两个解的差是对应齐次线性微分方程 2的的解, 因此y,x,1和y,x,1都是对应齐次线性微分方程的的解, 显然y与y是1212 线性无关, 所以非齐次线性微分方程的通解为 2 y,C(x,1),C(x,1),1, 12 2, 求以下列各式所表示的函数为通解的微分方程: 22 (1)(x,C),y,1(其中C为任意常数), 解 将等式变形 2x,C,,1,y ~ 两边对x求导得 ,yy1,, ~ 21,y 22222从而1,y,yy,~ 即所求微分方程为y(1,y,),1, x2x (2)y,Ce,Ce(其中C、C为任意常数), 1212 解 两边对x求导得 x2x2x y,,Ce,2Ce,y,Ce ~ 122 2x即 y,,y,Ce~, , ,(1) 2 再求导得 2x y,,,y,,2Ce, , , ,(2) 2 (2),(1),2得 y,,y,,2y~ y,,,2 即所求微分方程为y,,,3y,,2y,0, 3, 求下列微分方程的通解: ,xy,y,2xy (1), 解 将方程变形为 ,y1111,,y,(y),y, ~ 即, 2x2x2yxx其通解为 11,dxdx11,,22xxy,e(edx,C),(x,C) ~ ,xx 2xC(,)即原方程的通解为y, ,x (2) xy,ln x,y,ax(ln x,1), 解 将方程变形为 11, ~ y,y,a(1,)xlnxlnx其通解为 11,dxdx11,,lnlnxxxx ~ y,e[a(1,)edx,C],(axlnx,C),lnxlnx Cy,ax,即原方程的通解为, lnx dyy (3), ,dx2(lny,x) 解 将方程变形为 2lnydx2 ,x,~ dyyy 其通解为 22,dydy,,2lny1122yy ~ x,e(edy,C),(ylny,y,C),2y2y 1C即原方程的通解为x,lny,,, 22y dy33 (4), ,xy,xy,0dx 解 将方程变形为 ,2dyd(y)1,23,23,xy,x ~ 即~ ,2xy,,2x3dxydx其通解为 2222xdx,2xdx,23x2,x,x,, ~ y,e[(,2x)edx,C),e(xe,e,C), 2,2x2即原方程的通解为, y,Ce,x,1 ydx,xdyxdx,ydy,,0 (5), 22x,y 解 因为 22x,y ~ ()xdx,ydy,d2 ydx,xdyydx,xdy1,, 222xx,yy21,()y xx1 ,d,d~ ()(arctan)xyy2,1()y 所以原方程可写成 22yxxd(,,arctan),0 ~ 22y 从而原方程的通解为 x22 , x,y,2arctan,Cy 2 (6) yy,,,y,,1,0, dp,, 解 令y,,p~ 则~ 原方程化为 y,pdy dp2 ~ yp,p,1,0dy 2d(p)222p,,或 ~ dyyy 其通解为 22,dydy,,222,22yy , p,e(edy,C),y(,y,C),Cy,1,y dy22,,,dxy,,Cy,1于是 ~ 即(C,C)~ 12(Cy),11 积分得 2ln(Cy,(Cy),1),,x,C ~ 112 1化简得原方程的通解, y,ch(,x,C)2C1 (7) y,,,2y,,5y,sin2x, 2 解 齐次方程y,,,2y,,5y,0的特征方程为r,2r,5,0~ 其根为r,,1,2i , 1~ 2 因为f(x),sin2x~ ,,,i,2i不是特征方程的根~ 所以非齐次方程的特解应设为 y*,Acos2x,Bsin2x~ 代入原方程得 (A,2B)cos2x,(B,4A)sin2x,sin2x~ 4411A,,y*,,cos2x,sin2xB,比较系数得~ ~ , 17171717 因此原方程的通解为 41,x , y,e(Ccos2x,Csin2x),cos2x,sin2x121717 x (8) y,,,,y,,,2y,,x(e,4), 32 解 齐次方程y,,,,y,,,2y,,0的特征方程为r,r,2r,0~ 其根为r,0~ r,1~ r,2, 123 x,2x 齐次方程y,,,,y,,,2y,,0的通解为y,C,Ce,Ce , 123 x 原方程中f(x),f(x),f(x)~ 其中f(x),xe~ f(x),4x, 1212 x 对于方程y,,,,y,,,2y,,xe~ 因为,,1是特征方程的根~ 故其特解可设为 x y*,x(Ax,B)e~ 1 x代入y,,,,y,,,2y,,xe得 xx (6Ax,8A,3b)e,xe~ 1144xA,比较系数得~ ~ 故y*,x(x,)e, B,,16969 对于方程y,,,,y,,,2y,,4x~ 因为,,0是特征方程的根~ 故其特解可设为 y*,x(Cx,D)~ 2 代入y,,,,y,,,2y,,4x得 ,4Cx,2C,2D,4x~ 比较系数得C,,1~ D,,1~ 故y*,x(,x,1), 2 因此原方程的通解为 14x,2x2x2y,C,Ce,Ce,(x,x)e,x,x , 12369 42 (9) (y,3x)dy,xydx,0, 解 将原方程变形为 2d(x)6dx32323,x,,2y ~ 或~ x,x,,ydyydyy 其通解为 66,dydy,,236,2yy ~ x,e[(,2y)edy,C],y(y,C), 246即原方程的通解为x,y,Cy, 2,y,x,x,y (10), dydu222,2u,2xu,x,y 解 令~ 则y,u,x~ ~ 故原方程化为 dxdx du1x1du ~ 即,(),, 2u,x,udx2u2dx dudzu这是齐次方程~ 因此令~ 则u,xz~ ,z,x~ 则上述齐次方程化为 ,zdxdxx dz11dz11z,x,, ~ 即x,,(2z,,1)~ dx2z2dx2z分离变量得 zdz1dx ~ ,,22x2zz1,, 1132积分得 ln(2z,3z,1),,lnx,C~ 162 32,36C1即 2z,3z,1,Cx, (C,e) u将代入上式得 z,x 323 2u,3xu,x,C~ 2233u,x,y2(x,y),2x,3xy,C再代入~ 得原方程的通解, 4, 求下列微分方程满足所给初始条件的特解: 322 (1) ydx,2(x,xy)dy,0~ x,1时y,1, 解 原方程变形为 dx222 ~ ,x,,x3dyyy dx2221,,即 ~ x,x,,3dyyy 1,d(x)22,1,x,或 ~ 3dyyy 其通解为 22dy,,,211yy, ~ x,e(edy,C),(2lny,C),32yy即原方程的通解为 2 y,x(2ln y,C), 2 由y|,1~ 得C,1, 故满足所给初始条件的特解为y,x(2ln y,1), x,1 2 (2) y,,,ay,,0~ x,0时y,0~ y,,,1, 解 令y,,p~ 则原方程化为 dp2 , ,ap,0dx 分离变量得 dp ,adx~ 2p 两边积分得 11, ~ 即, ,,ax,Cy,,1pax,C1代入初始条件y,(0),,1得C,1~ 1 1,故 y,,, ax,1 方程两边积分得 1 y,,ln(ax,1),C, 2a 代入初始条件y(0),0得C,0, 2 1y,,ln(ax,1) 因此满足所给初始条件的特解为, a , (3) 2y,,,sin2y,0~ x,0时y,~ y,,1, 2 解 令y,,p~ 则原方程化为 dp , 2p,sin2y,0dy 分离变量得 2pdp,sin2ydy ~ 两边积分得 12p,,cos2y,C , 12 1C,代入初始条件y,(0),1得~ 12 1122,y,,cos2y,,siny因而 ~ 22即 y,,sin y , 分离变量得 dy ~ ,dxsiny 两边积分得 1,cosy1ln,x,C , 221,cosy ,代入初始条件得C,0, y(0),22 1,cosy1 因此满足所给初始条件的特解为, x,ln21,cosy 3, (4) y,,,2y,,y,cos x~ x,0时y,0~ , y,2 解 齐次方程y,,,2y,,y,0的特征方程为 2 r,2r,1,0~ 其根为r,,1, 1~ 2 ,x齐次方程y,,,2y,,y,0的通解为y,(C,Cx)e, 12 因为f(x),cos x~ ,,,i,i不是特征方程的根~ 所以非齐次方程的特解应设为 y*,Acos x,Bsin x~ 代入原方程得 ,2Asin x,2Bcos x,cos x~ 11B,y*,sinx比较系数得A,0~ , 故, 从而原方程的通解为 22 1,xy,(C,Cx)e,sinx , 122 将初始条件代入通解得 ,0C,1, ~ 13,,C,C,,12,22, 解之得C,0~ C,1, 12 1,xy,xe,sinx 因此满足所给初始条件的特解为, 2 轴上的截距等于切点的横坐标~ 求它 5, 已知某曲线经过点(1~ 1)~ 它的切线在纵的方程, 解 设点(x~ y)为曲线上任一点~ 则曲线在该点的切线方程为 Y,y,y,(X,x)~ 其在纵轴上的截距为y,xy,~ 因此由已知有 1,y,y,,1 y,xy,,x~ 即, x 这是一个一阶线性方程~ 其通解为 11dx,dx,,xx ~ y,e[(,1)edx,C],x(,lnx,C), 即方程的通解为y,x(C,ln x), 由于曲线过点(1~ 1)~ 所以C,1, 因此所求曲线的方程为y,x(1,ln x), 3 6, 已知某车间的容积为30,30,6m~ 其中的空气含0,12%的CO(以容积计算), 2 现以含CO0,04%的新鲜空气输入~ 问每分钟应输入多少~ 才能在30min后使车间空2 气中CO的含量不超过0,06%?(假定输入的新鲜空气与原有空气很快混合均匀后~ 2 以相同的流量排出), 3 解 设每分钟应输入的空气为a m~ t时刻车间中CO的浓度为x(t)~ 则车间中2 CO的含量(以体积计算)在t时刻经过dt min的改变量为 2 30,30,6 dx,0,0004adt,axdt~ 分离变量得 1a dx,,dt~ x,0.00045400 由于x,0,0004~ 故两边积分得 a ln(x,0.0004),,t,lnC~ 5400 a,t5400即 , x,0.0004,Ce 由于开始时车间中的空气含0,12%的CO~ 即当t,0时~ x,0,0012~ 代入上式得2 a,t5400C,0, 0008, 因此, x,0.0004,0.0008e 5400x,0.004a,,ln 由上式得, t0.0008 由于要求30min后车间中CO的含量不超过0,06%~ 即当t,30时~ x,0,0006~ 2 将t,30~ x,0, 0006代入上式得a,180ln 4,250, a,t0.00085400,x,,e,0 因为~ 所以x是a的减函数~ 考试当a,250时可保证5400 x,0,0006, 3 因此每分钟输入新鲜空气的量不得小于250m, 7, 设可导函数,(x)满足 x,(x)cosx,2,(t)sintdt,x,1 ~ ,0 求,(x), 解 在等式两边对x求导得 ,,(x)cos x,,(x)sin x,2,(x)sin x,1~ 即 ,,(x),tan x,(x),sec x, 这是一个一阶线性方程~ 其通解为 ,tanxdxtanxdx,, ,(x),e(secxedx,C), ,cos x(tan x,C),sin x,Ccos x, 在已知等式中~ 令x,0得,(0),1~ 代入通解得C,1, 故,(x),sin x,cos x , 222r,x,y,z 8, 设函数u,f(r)~ 在r,0内满足拉普拉斯(Laplace)方程 222,u,u,u,,,0 ~ 222,x,y,z 其中f(r)二阶可导~ 且f(1),f ,(1),1, 试将拉普拉斯方程化为以r为自变量的常微分方 程~ 并求f(r), ,r2xx,, 解 因为~ 222,xr2x,y,z ,u,rx,,所以 ,f(r),f(r)~ ,x,xr ,rr,x2222,ux,rr,xx,x,,,,,f(r),f(r),f(r),f(r) , 2232r,x,xrrr 同理可得 22222222r,yy,u,ur,zz,,,,,f(r),f(r) ~ , ,f(r),f(r)232232,yrr,zrr 22222222223r,x,y,zx,y,z,u,u,u,,,,,f(r),f(r)于是 22232,x,y,zrr 222r2dudu,, , ,f(r),f(r),,32rdrrdr 因此拉普拉斯方程化为 222dududu2du ~ 即, ,,0,,022rdrrdrdrdr du,p(r) 令~ 则以上方程进一步变成 dr dpdp22 ~ 即~ p,,0,p,0rdrdrr 其通解为 2,drCCdu,11rpCe,, ~ 即,, 122drrr du1du,1,由于f ,(1),1~ 即r,1时~ 所以C,1~ , 12drdrr du1, 在方程的两边积分得 2drr 1 , u,,,C2r 又由于f(1),1~ 即r,1时u,1~ 所以C,2~ 2 11从而~ 即, u,,,2f(r),,,2rr 9, 设y(x)、y(x)是二阶齐次线性方程y,,,p(x)y,,q(x)y,0的两个解~ 令 12 y(x)y(x)12,, W(x),,y(x)y(x),y(x)y(x)~ 1212,,y(x)y(x)12 证明: (1)W(x)满足方程W ,,p(x)W,0, 证明 因为y(x)、y(x)都是方程y,,,p(x)y,,q(x)y,0的解~ 12 所以 y,,,p(x)y,,q(x)y,0~ y,,,p(x)y,,q(x)y,0~ 111222 从而 W ,,p(x)W,(y,y,, yy,,, y,,y, y,y,),p(x)( yy,, y,y) 121212121212 ,y[y,,,p(x)y,], y[y,,,p(x)y,] 122211 ,y[,q(x)y], y[,q(x)y] 1221 ,0~ 即W(x)满足方程W ,,p(x)W,0, x,p(t)dt,x0W(x)W(x)e, (2), 0 证明 已知W(x)满足方程 W ,,p(x)W,0~ 分离变量得 dW,,p(x)dx , W 将上式两边在[x~ x]上积分~ 得 0 x ~ lnW(x),lnW(x),,p(t)dt0,x0 x,p(t)dt,x0W(x)W(x)e,即 , 0
本文档为【同济第六版高数答案(高等数学课后习题解答)3.】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_842972
暂无简介~
格式:doc
大小:54KB
软件:Word
页数:23
分类:
上传时间:2017-09-16
浏览量:82