首页 (最新)初中数学竞赛知识点归纳(整数)

(最新)初中数学竞赛知识点归纳(整数)

举报
开通vip

(最新)初中数学竞赛知识点归纳(整数)(最新)初中数学竞赛知识点归纳(整数) 初中数学竞赛知识点归纳 一、数的整除(一) 如果整数A除以整数B(B?0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 一些数的整除特征 除 数 能被整除的数的特征 2或5 末位数能被2或5整除 4或25 末两位数能被4或25整除 8或125 末三位数能被8或125整除 3或9 各位上的数字和被3或9整除(如771,54324) 奇数位上的数字和与偶数位上的数和相减,其差能被11整除 11 (如143,1859,1287,9082...

(最新)初中数学竞赛知识点归纳(整数)
(最新)初中数学竞赛 知识点 高中化学知识点免费下载体育概论知识点下载名人传知识点免费下载线性代数知识点汇总下载高中化学知识点免费下载 归纳(整数) 初中数学竞赛知识点归纳 一、数的整除(一) 如果整数A除以整数B(B?0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 一些数的整除特征 除 数 能被整除的数的特征 2或5 末位数能被2或5整除 4或25 末两位数能被4或25整除 8或125 末三位数能被8或125整除 3或9 各位上的数字和被3或9整除(如771,54324) 奇数位上的数字和与偶数位上的数和相减,其差能被11整除 11 (如143,1859,1287,908270等) 7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减, 其差能被7或11或13整除.(如1001,22743,17567,21281等) 能被7整除的数的特征: ?抹去个位数 ?减去原个位数的2倍 ?其差能被7整除。 如 1001 100,2,98(能被7整除) 又如7007 700,14,686, 68,12,56(能被7整除) 能被11整除的数的特征: ?抹去个位数 ?减去原个位数 ?其差能被11整除 如 1001 100,1,99(能11整除) 又如10285 1028,5,1023 102,3,99(能11整除) 二、倍数.约数 1 两个整数A和B(B?0),如果B能整除A(记作B,A),那么A叫做B的倍数,B叫做A的约数。例如3,15,15是3的倍数,3是15的约数。 2 因为0除以非0的任何数都得0,所以0被非0整数整除。0是任何非0整数的倍数,非0整数都是0的约数。如0是7的倍数,7是0的约数。 3 整数A(A?0)的倍数有无数多个,并且以互为相反数成对出现,0,?A,?2A,„„都是A的倍数,例如5的倍数有?5,?10,„„。 4 整数A(A?0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括?1和?A。例如6的约数是?1,?2,?3,?6。 5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。 6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。 7 在有余数的除法中,被除数,除数×商数,余数 若用字母表示可记作: A,BQ,R,当A,B,Q,R都是整数且B?0时,A,R能被B整除 例如23,3×7,2 则23,2能被3整除。 三、质数.合数 1正整数的一种分类: 质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质 数(质数也称素数)。 合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正 整数叫做合数。 2根椐质数定义可知 ? 质数只有1和本身两个正约数, ? 质数中只有一个偶数2 如果两个质数的和或差是奇数那么其中必有一个是2, 如果两个质数的积是偶数那么其中也必有一个是2, 3任何合数都可以分解为几个质数的积。能写成几个质数的积的正整数就是合数。 四、零的特性 一,零既不是正数也不是负数,是介于正数和负数之间的唯一中性数。 零是自然数, 是整数,是偶数。 1, 零是表示具有相反意义的量的基准数。 例如:海拔0米的地方表示它与基准的海平面一样高 收支衡可记作结存0元。 2, 零是判定正、负数的界限。 若a ,0则a是正数,反过来也成立,若a是正数,则 a,0 记作 a,0 a是正数 读作a,0等价于a是正数 , b<0 b 是负数 , c?0 c是非负数(即c不是负数,而是正数或0) , d0 d是非正数 (即d不是正数,而是负数或0) ,, e0 e不是0 (即e不是0,而是负数或正数) ,, 3, 在一切非负数中有一个最小值是0。 例如 绝对值、平方数都是非负数,它们的最小值都是0。 记作:|a|?0,当a=0时,,a,的值最小,是0, 22a?0,a有最小值0(当a=0时)。 4, 在一切非正数中有一个最大值是0。 例如 ,|X|?0,当X,0时,,|X|值最大,是0,(?X?0时都是负数), 22 ,(X,2),0,当X,2时,,(X,2)的值最大,是0。 二,零具有独特的运算性质 1, 乘方:零的正整数次幂都是零。 2,除法:零除以任何不等于零的数都得零; 零不能作除数。从而推出,0没有倒数,分数的分母不能是0。 3, 乘法:零乘以任何数都得零。 即a×0,0, 反过来 如果 ab=0,那么a、b中至少有一个是0。 要使等式xy=0成立,必须且只需x=0或y=0。 4, 加法 互为相反数的两个数相加得零。反过来也成立。 即a、b互为相反数a+b=0 , 5, 减法 两个数a和b的大小关系可以用它们的差的正负来判定, 若a-b=0,则a=b; 若a-b,0,则a,b; 若a-b,0,则a,b。 反过来也成立,当a=b时,a-b=0;当a>b时,a-b>0;当an),则至少有一个集合里元素不少 m于个。 ,,n mm3, 根据的定义,己知m、n可求; ,,,,nn mmmmx己知,则可求的范围,例如己知,3,那么2,?3;己知,2,,,,,,,nnnn3 x,?2,即3,x?6,x有最小整数值4 则 13 九、一元一次方程解的讨论 1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的 解也叫做根。 例如:方程 2x,6,0, x(x-1)=0, |x|=6, 0x=0, 0x=2的解 分别是: x=,3, x=0或x=1, x=?6, 所有的数,无解。 2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b后, b讨论它的解:当a?0时,有唯一的解 x=; a 当a=0且b?0时,无解; 当a=0且b,0时,有无数多解。(?不论x取什么值,0x,0都成立) 3, 求方程ax=b(a?0)的整数解、正整数解、正数解 当a,b时,方程有整数解; 当a,b,且a、b同号时,方程有正整数解; 当a、b同号时,方程的解是正数。 综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b 十、二元一次方程的整数解 1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c中, 若a,b的最大公约数能整除c,则方程有整数解。即 如果(a,b)|c 则方程ax+by=c有整数解 显然a,b互质时一定有整数解。 例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。 返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解, ?(9,3),3,而3不能整除10;(4,2),2,而2不能整除1。 一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。 2, 二元一次方程整数解的求法: 若方程ax+by=c有整数解,一般都有无数多个,常引入整数k来表示它的通解(即所有的解)。k叫做参变数。 方法一,整除法:求方程5x+11y=1的整数解 1,11y1,y,10y1,y解:x== (1) , ,,2y555 1,y 设是整数),则y=1-5k (2) , ,k(k5 把(2)代入(1)得x=k-2(1-5k)=11k-2 x,11k,2,?原方程所有的整数解是(k是整数) ,y,1,5k, 方法二,公式法: x,x,bkx,x,,00设ax+by=c有整数解则通解是(x,y可用观察法) 00,,yyy,y,ak,00,, 3, 求二元一次方程的正整数解: ? 出整数解的通解,再解x,y的不等式组,确定k值 ? 用观察法直接写出。 十一、二元一次方程组解的讨论 ,,axbyc,1111( 二元一次方程组的解的情况有以下三种: ,ax,by,c222, abc111,, 当时,方程组有无数多解。(?两个方程等效) ?abc222 abc111,,? 当时,方程组无解。(?两个方程是矛盾的) abc222 ab11,? 当(即ab,ab?0)时,方程组有唯一的解: 1221ab22 cb,cb,1221x,,ab,ab,1221 (这个解可用加减消元法求得) ,ca,ca2112,y,,ab,ab1221, 2( 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按 二元一次方程整数解的求法进行。 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解 含待定系数的不等式或加以讨论。 四十五、一元二次方程的根 21. 一元二次方程ax+bx+c=0(a?0)的实数根,是由它的系数a, b, c的值确定的. 2,,,bb4ac2根公式是:x=. (b,4ac?0) 2a 2. 根的判别式 2? 实系数方程ax+bx+c=0(a?0)有实数根的充分必要条件是: 2b,4ac?0. 2? 有理系数方程ax+bx+c=0(a?0)有有理数根的判定是: 2b,4ac是完全平方式方程有有理数根. , 22 ?整系数方程x+px+q=0有两个整数根p,4q是整数的平方数. , 23. 设x, x 是ax+bx+c=0的两个实数根,那么 122222? ax+bx+c=0 (a?0,b,4ac?0), ax+bx+c=0 (a?0, b,4ac?0); 1122 22,,,,,,bb4acbb4ac2? x=, x= (a?0, b,4ac?0); 122a2a bc2? 韦达定理:xxxx (a?0, b,4ac?0). , 12=1+2= ,aa 4. 方程整数根的其他条件 2整系数方程ax+bx+c=0 (a?0)有一个整数根x的必要条件是:x是c的因数. 11 特殊的例子有: C=0x=0 , a+b+c=0x=1 , a,b+c=0x=,1. ,,,111 四十六、完全平方数和完全平方式 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 4例如0,1,0.36,,121都是完全平方数. 25 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 222在有理数范围 m, (a+b,2), 4x,12x+9, 144都是完全平方式. 22在实数范围 (a+), x+2x+2, 3也都是完全平方式. 32 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8 的整数必不是平方数. 22. 若n是完全平方数,且能被质数p整除, 则它也能被p整除.. 2若整数m能被q整除,但不能被q整除, 则m不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 22如果 ax+bx+c (a?0)是完全平方式,则b,4ac=0且a>0; 22如果 b,4ac=0且a>0;则ax+bx+c (a?0)是完全平方式. 在有理数范围内 22当b,4ac=0且a是有理数的平方时,ax+bx+c是完全平方式. 四. 完全平方式和完全平方数的关系 2 1. 完全平方式(ax+b)中 当a, b都是有理数时, x取任何有理数,其值都是完全平方数; 当a, b中有一个无理数时,则x只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 2 例如: n+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 21. 在整系数方程ax+bx+c=0(a?0)中 2? 若b,4ac是完全平方数,则方程有有理数根; 2? 若方程有有理数根,则b,4ac是完全平方数. 22. 在整系数方程x+px+q=0中 2? 若p,4q是整数的平方,则方程有两个整数根; 2? 若方程有两个整数根,则p,4q是整数的平方. 十二、用交集解题 1( 某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如6的正约 数集合记作,6的正约数,,,1,2,3,6,,它有4个元素1,2,3,6;除以3余1 的正整数集合是个无限集,记作,除以3余1的正整数,,,1,4,7,10„„,,它的 个元素有无数多个。 2( 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集 例如6的正约数集合A,,1,2,3,6,,10的正约数集合B,,1,2,5,10,,6与 10的公约数集合C,,1,2,,集合C是集合A和集合B的交集。 3( 几个集合的交集可用图形形象地表示, 正右图中左边的椭圆表示正数集合, 正整 右边的椭圆表示整数集合,中间两个椭圆 整数数数的公共部分,是它们的交集――正整数集。 集集集不等式组的解集是不等式组中各个不等式解集的交集。 2x,6?(1),例如不等式组解的集合就是 ,,x,2?(2), 不等式(1)的解集x>3和不等式(2)的解集x,2的交集,x>3 . 如数轴所示: 0 2 3 4(一类问题,它的 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 要同时符合几个条件,一般可用交集来解答。把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。 有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,得答案。 十三、用枚举法解题 有一类问题的解答,可依题意一一列举,并从中找出规律。列举解答要注意: ? 按一定的顺序,有系统地进行; ? 分类列举时,要做到既不重复又不违漏; ? 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。 十四、经验归纳法 1(通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。 通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如 234?由 ( , 1) , 1 ,(, 1 ) ,, 1 ,(, 1 ) , 1 ,„„, 归纳出 , 1 的奇次幂是, 1,而, 1 的偶次幂 是 1 。 ?由两位数从10 到 99共 90 个( 9 × 10 ), 2三位数从 100 到 999 共900个(9×10), 33四位数有9×10,9000个(9×10), „„„„ n-1归纳出n 位数共有9×10(个) 222? 由1+3=2, 1+3+5=3, 1+3+5+7=4„„ 2推断出从1开始的n个連续奇数的和等于n等。 可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。 2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。 由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归纳法证明) 十五、乘法公式 1( 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。 公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。 公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。 2( 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。 222完全平方公式:(a?b)=a?2ab+b, 22 平方差公式:(a+b)(a,b)=a,b 2233 立方和(差)公式:(a?b)(aab+b)=a?b, 3.公式的推广: 22222? 多项式平方公式:(a+b+c+d)=a+b+c+d+2ab+2ac+2ad+2bc+2bd+2cd 即:多项式平方等于各项平方和加上每两项积的2倍。 33223? 二项式定理:(a?b)=a?3ab+3ab?b 4432234(a?b)=a?4ab+6ab?4ab+b) 55432 2345(a?b)=a?5ab+10ab?10ab,5ab?b) „„„„ 注意观察右边展开式的项数、指数、系数、符号的规律 ? 由平方差、立方和(差)公式引伸的公式 322344(a+b)(a,ab+ab,b)=a,b 43223455 (a+b)(a,ab+ab,ab+b)=a+b 4322345665(a+b)(a,ab+ab,ab+ab,b)=a,b „„„„ 注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n为正整数 ,,,,,2n12n22n322n22n12n2n (a+b)(a,ab+ab,„,ab,b)=a,b ,,,2n2n12n222n12n2n+12n+1 (a+b)(a,ab+ab,„,ab+b)=a+b 类似地: ,,,,,n1n2n32n2n1nn(a,b)(a+ab+ab+„,ab+b)=a,b 4. 公式的变形及其逆运算 222222由(a+b)=a+2ab+b 得 a+b=(a+b),2ab 3322333333由 (a+b)=a+3ab+3ab+b=a+b+3ab(a+b) 得 a+b=(a+b),3ab(a+b) 由公式的推广?可知:当n为正整数时 nna,b能被a,b整除, 2n+12n+1 a+b能被a+b整除, 2n2na,b能被a+b及a,b整除。 十六、整数的一种分类 1( 余数的定义:在等式A,mB,r中,如果A、B是整数,m是正整数, r为小于m的非负整数,那么我们称r是A 除以m的余数。 即:在整数集合中 被除数,除数×商,余数 (0?余数<除数) 例如:13,0,,1,,9除以5的余数分别是3,0,4,1 (?,1,5(,1),4。 ,9,5(,2),1。) 2( 显然,整数除以正整数m ,它的余数只有m种。 例如 整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。 3( 整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。例如: m=2时,分为偶数、奇数两类,记作,2k,,,2k,1, (k为整数) m=3时,分为三类,记作,3k,,,3k+1,,,3k+2,. 或,3k,,,3k+1,,,3k,1,其中,3k,1,表示除以3余2。 m=5时,分为五类,,5k,.,5k+1,,,5k+2,,,5k+3,,,5k+4, 或,5k,,,5k?1,,,5k?2,, 其中5k,2表示除以5余3。 4( 余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。 举例如下: ?(3k+1)+(3k+1)=3(k+k)+2 (余数1,1,2) 1212 ?(4k+1)(4k+3)=4(4kk+3k+k)+3 (余数1×3,3) 1212122222?(5k?2),25k?20k+4=5(5k?4k)+4 (余数2,4) 以上等式可叙述为: ? 两个整数除以3都余1,则它们的和除以3必余2。 ? 两个整数除以4,分别余1和3,则它们的积除以4必余3。 ? 如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是 4或9。 余数的乘方,包括一切正整数次幂。 66如:?17除以5余2 ?17除以5的余数是4 (2,64) 5( 运用整数分类解题时,它的关鍵是正确选用模m。 十七、奇数.偶数 1( 奇数和偶数是在整数集合里定义的,能被2整除的整数是偶数,如2,0,2„,不能被 2整除的整数是奇数,如,1,1,3。 如果n 是整数,那么2n是偶数,2n,1或2n+1是奇数。如果n是正整数,那么2n是 正偶数,2n-1是正奇数。 2( 奇数、偶数是整数的一种分类。可表示为: 奇数集奇数, 整数 或 整数集合 ,偶数集偶数, 这就是说,在整数集合中是偶数就不是奇数,不是偶数就是奇数,如果既不是偶数又不是奇数,那么它就不是整数。 3( 奇数偶数的运算性质: 奇数?奇数,偶数,奇数?偶数,奇数,偶数?偶数,偶数 奇数×奇数,奇数 奇数×偶数,偶数,偶数×偶数,偶数 奇数的正整数次幂是奇数,偶数的正整数次幂是偶数, 两个連续整数的和是奇数,积是偶数。 十八、式的整除 1( 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这 个整式被另一个整式整除。 2( 根据被除式,除式×商式,余式,设f(x),p(x),q(x)都是含x 的整式, 那么 式的整除的意义可以表示为: 若f(x),p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除 2 例如?x,3x,4,(x,4)(x +1), 2?x,3x,4能被(x,4)和(x +1)整除。 2显然当 x=4或x=,1时x,3x,4,0, 3( 一般地,若整式f(x)含有x –a的因式,则f(a)=0 反过来也成立,若f(a)=0,则x,a能整除f(x)。 4( 在二次三项式中 22若x+px+q=(x+a)(x+b),x+(a+b)x+ab 则p=a+b,q=ab 在恒等式中,左右两边同类项的系数相等。这可以推广到任意多项式。 十九、因式分解 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。 下面再介紹两种方法 1( 添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 42333例1因式分解:?x+x+1 ?a+b+c,3abc 42?分析:x+1若添上2x可配成完全平方公式 4242222222解:x+x+1,x+2x+1,x=(x+1),x=(x+1+x)(x+1,x) 33322 ?分析:a+b要配成(a+b)应添上两项3ab+3ab 3333223322解:a+b+c,3abc,a+3ab+3ab,b+c,3abc,3ab,3ab 33 ,(a+b)+c,3ab(a+b+c) 22 =(a+b+c),(a+b),(a+b)c+c,,3 ab(a+b+c) 222 =(a+b+c)(a+b+c,ab,ac,bc) 53例2因式分解:?x,11x+20 ? a+a+1 5? 分析:把中项,11x拆成,16x+5x 分别与x,20组成两组,则有公因式可提。(注意这 里16是完全平方数) 332? 解:x,11x+20,x,16x+5x+20,x(x,16)+5(x+4) 2=x(x+4)(x,4)+5(x+4) =(x+4)(x,4x+5) 225? 分析:添上,a 和a两项,分别与a和a+1组成两组,正好可以用立方差公式 5522232解:a+a+1,a,a+a+a+1=a(a,1)+ a+a+1 222232=a(a,1)( a+a+1)+ a+a+1= (a+a+1)(a,a+1) 2( 运用因式定理和待定系数法 定理:?若x=a时,f(x)=0, ,即f(a)=0,,则多项式f(x)有一次因式x,a ?若两个多项式相等,则它们同类项的系数相等。 3232例3因式分解:?x,5x+9x,6 ?2x,13x+3 ?分析:以x=?1,?2,?3,?6(常数6的约数)分别代入原式,若值为0,则可找到一次 因式,然后用除法或待定系数法,求另一个因式。 32解:?x=2时,x,5x+9x,6,0,?原式有一次因式x ,2, 322?x,5x+9x,6,(x ,2)(x,3x+3,) ?分析:用最高次项的系数2的约数?1,?2分别去除常数项3的约数 13?1,?3得商?1,?2,?,?,再分别以这些商代入原式求值, 22 1可知只有当x=时,原式值为0。故可知有因式2x-1 2 132解:?x=时,2x,13x+3,0,?原式有一次因式2x,1, 2322设2x,13x+3,(2x,1)(x+ax,3), (a是待定系数) 2比较右边和左边x的系数得 2a,1,,13, a=,6 32?2x,13x+3,(2x,1)(x,6x,3)。 22例4因式分解2x+3xy,9y+14x,3y+20 22解:?2x+3xy,9y,(2x,3y)(x+3y), 用待定系数法,可设 222x+3xy,9y+14x,3y+20,(2x,3y,a)(x+3y,b),a,b是待定的系数, 比较右边和左边的x和y两项 的系数,得 a,2b,14a,4, 解得 ,3a,3b,,3b,5, 22?2x+3xy,9y+14x,3y+20,(2x,3y+4)(x+3y+5) 22+又解:原式,2x+(3y+14)x,(9y3y,20) 这是关于x的二次三项式 常数项可分解为,(3y,4)(3y+5),用待定系数法,可设 22+2x+(3y+14)x,(9y3y,20),,mx,(3y,4),,nx+(3y+5), 2比较左、右两边的x和x项的系数,得m=2, n=1 22?2x+3xy,9y+14x,3y+20,(2x,3y+4)(x+3y+5) 二十、代数恒等式的证明 证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法则、性质。 具体证法一般有如下几种 1(从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论 的形式。 2(把左、右两边分别化简,使它们都等于第三个代数式。 3(证明:左边的代数式减去右边代数式的值等于零。即由左边,右边,0可得左边,右边。 4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边证它能达到另一边, 二十一、比较大小 1( 比较两个代数式的值的大小,一般要按字母的取值范围进行讨论,常用求差法。根据不 等式的性质: 当a,b,0时,a,b; 当a,b,0时,a=b; 当a,b,0时a,b。 2( 通常在写成差的形式之后,用因式分解化为积的形式,然后由负因数的个数决定其符号。 3( 需要讨论的可借助数轴,按零点分区。 4( 实数(有理数和无理数的统称)的平方是非负数,在决定符号时常用到它。即若a是实 2数,则a?0,由此而推出一系列绝对不等式(字母不论取什么值,永远成立的不等式)。 诸如 132222(a,b)?0, a+1,0, a+a+1=(a+)+,0 24222,a?0, ,(a+a+2),0 当a?b时,,(a,b),0 二十二、分式 1( 除式含有字母的代数式叫做分式。分式的值是由分子、分母中的字母的取值确定的。 A(1)分式中,当B?0时有意义;当A、B同号时值为正,异号时值为负,反过来也成立。B 分子、分母都化为积的形式时,分式的符号由它们中的负因数的个数来确定。 A(2)若A、B及都是整数,那么A是B的倍数,B是A的约数。 B A(3)一切有理数可用来表示,其中A是整数,B是正整数,且A、B互质。 B 2( 分式的运算及恒等变形有一些特殊题型,要用特殊方法解答方便。 二十三、递推公式 2221.先看一例:a=b,a=,a=„„ a=这里a,a,a„„a,a是对应于正整数1,123n+1123nn+1aaa12n 2,3„„n,n+1 的有序的一列数(右下标的数字表示第几项),这一列数只要给出某一项数值,就可以推出其他各项数值。 112例如: 若 a=10, 则a==,a=10,a=,a=10„„ 123451055 2. 为了计算的方便,通常把递推公式写成以a和n表示a的形式,这可用经验归纳法。 例1n 如:把递推公式a=a+5改为用a和n来表示 n+1n1 ?a=a+5, ?a=a+5=(a+5)+5=a+2×5, a=a+5=(a+2×5)+5=a+3×5 2132114311 „„ ?a=a+(n-1)5 n1 如果 已知a=10, 求a,显然代入这一公式方便。A=10+19×5=105 12020 3.有一类问题它与正整数的顺序有关,可寻找递推公式求解,这叫递推法。 二十四、连续正整数的性质 一.两个连续正整数 1.两个连续正整数一 定是互质的,其商是既约分数。 2.两个连续正整数的积是偶数,且个位数只能是0,2,6。 3.两个连续正整数的和是奇数,差是1。 4.大于1的奇数都能写成两个连续正整数的和。例如3,1,2,79,39,40, 111,55,56。 二.计算连续正整数的个数 例如:不同的五位数有几个,这是计算连续正整数从10000到99999的个数,它是 99999,10000,1,90000(个) n-101. n位数的个数一般可表示为 9×10(n为正整数,10,1) 0例如一位正整数从1到9共9个(9×10), 1二位数从10到99共90个 (9×10) 2三位数从100到999共900个(9×10)„„ 2.连续正整数从n 到m的个 数是 m,n+1 把它推广到连续奇数、连续偶数、除以模m有同余数的连续数的个数的计算,举例如下: 49,133. 从13到49的连续奇数的个数是,1,19 2 48,14从13到49的连续偶数的个数是,1,18 2 48,154. 从13到49能被3整除的正整数的个数是,1,12 3 49,13从13到49的正整数中除以3余1的个数是,1,13 3 你能从中找到计算规律吗, 三.计算连续正整数的和 n1. 1,2,3,„„,n,(1,n) (n是正整数) 2 b,a,1 连续正整数从a到b的和 记作(a+b) 2 把它推广到计算连续奇数、连续偶数、除以模m有同余数的和,举例如下: 2355,112. 11,13,15,„,55,(11,55)×,759 (?从11到55有奇数,1,2322 个) 153. 11,14,17,„,53,(11,53)×,480 (?从11到53正整数中除以3余2的2 53,11数的个数共,1,15) 3 四. 计算由连续正整数连写的整数,各数位上的数字和 1. 123456789各数位上的数字和是(0,9),(1,8),„,(4,5) ,9×5,45 2. 1234„99100计算各数位上的数字和可分组为:(0,99),(1,98), (2,97)„(48,51),(49,50)共有50个18,加上100中的1 ?各数位上的数字和是18×50,1,901 五. 连续正整数的积 从1开始的n个正整数的积1×2×3ׄ×n记作n~,读作n的阶乘 1. n个连续正整数的积能被n~整除, 如11×12×13能被1×2×3整除;97×98×99×100能被4~整除; a(a+1)(a+2)„(a+n)能被(n+1)~整除。 2. n~含某因质数的个数。举例如下: ? 1×2×3ׄ×10的积中含质因数2的个数共8个 其中2,4,6,8,10都含质因数2 暂各计1个,共5个 2其中4,2 含两个质因数2 增加了1个 3其中8,2 含三个质因数2 再增加2个 ? 1×2×3ׄ×130的积中含质因数5的个数的计算法 5,10,15,„125,130 均含质因数5 暂各计1个,共26个 2其中25,50,75,100均含5有两个5 各加1个, 共4个 3其中125,5含三个5 再增加2个 ?积中含质因数5的个数是32 ,这一性质进行讨论 四十一、 线段的比、积、幂 一(有关线段的比、积、幂的主要定理 ac1. 比例的基本性质: 合比,等比定理(略) ,ad,bc,bd 2. 平行线分线段成比例定理(即平行截线定理)的推论 AEID ADEADAEDE?BC ,,DBECBCBC推广到:过一点的一线束被平行线截得的对应线段成比例 O CAB11ABBCOB,b,,,ABc111ABBCOB,11111 a?b ,OOAOBa,,,OAOB11,CBAACB 3. 相似多边形性质:对应线段成比例,面积比等于相似比的平方 4. 直角三角形中成比例线段定理(射影定理) C2,CD,AD,BD ,2,ACB,Rt,AC,AD,AB,,, ,,2CD,ABBC,BD,AB,,ABD,AB,CD,AC,BC, 5. 三角形内(外)角平分线性质 AA2在?ABC中 112 BDABBC,,?1,?2 DCBDDCAC 6. 圆中成比例线段定理(即圆幂定理) 若ABCD四点共圆, TDAB、CD交于P, DB 则PA×PB,PC×PD APC2 ,PTCPB(PT切圆于T) A7. 三角形、平行四边形面积公式(略) abc,,8.正弦定理:在?ABC中, SinASinBSinC 二(要运用相似三角形证明线段的积、幂,一般应把积、幂先化为比例式,然后由它来找 相似三角形。有时还要用等线段或等比代换。
本文档为【&#40;最新&#41;初中数学竞赛知识点归纳&#40;整数&#41;】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_954223
暂无简介~
格式:doc
大小:51KB
软件:Word
页数:0
分类:工学
上传时间:2017-10-26
浏览量:57