首页 The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis

The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis

举报
开通vip

The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepisThe SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis SQL Basic SQL Intro SQL Syntax SQL SELECT SQL DISTINCT SQL WHERE SQL AND & OR SQL ORDER BY SQL TOP SQL Advanced SQL LIKE SQL Wildcards SQL IN SQL BETWEEN SQL Alias SQL Join SQL INNER JO...

The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis
The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis SQL Basic SQL Intro SQL Syntax SQL SELECT SQL DISTINCT SQL WHERE SQL AND & OR SQL ORDER BY SQL TOP SQL Advanced SQL LIKE SQL Wildcards SQL IN SQL BETWEEN SQL Alias SQL Join SQL INNER JOIN SQL LEFT JOIN SQL RIGHT JOIN SQL FULL JOIN SQL UNION SQL SELECT INTO SQL CREATE DB SQL CREATE TABLE SQL Constraints SQL NOT NULL SQL UNIQUE SQL PRIMARY KEY SQL FOREIGN KEY SQL CHECK SQL DEFAULT SQL CREATE INDEX SQL DROP SQL ALTER SQL INSERT SQL INCREMENT SQL UPDATE SQL DELETE SQL CREATE VIEW SQL Functions SQL Functions SQL AVG() SQL COUNT() SQL FIRST() SQL LAST() SQL MAX() SQL MIN() SQL SUM() SQL GROUP BY SQL HAVING SQL UCASE() SQL LCASE() SQL MID() SQL LEN() SQL ROUND() SQL NOW() SQL FORMAT() SQL Specials SQL NULLS SQL ISNULL() SQL Data Types SQL is a standard language for accessing and manipulating databases. What is SQL? , SQL stands for Structured Query Language , SQL lets you access and manipulate databases , SQL is an ANSI (American National Standards Institute) standard What Can SQL do? , SQL can execute queries against a database , SQL can retrieve data from a database , SQL can insert records in a database , SQL can update records in a database , SQL can delete records from a database , SQL can create new databases , SQL can create new tables in a database , SQL can create stored procedures in a database , SQL can create views in a database , SQL can set permissions on tables, procedures, and views SQL is a Standard - BUT.... Although SQL is an ANSI (American National Standards Institute) standard, there are many different versions of the SQL language. However, to be compliant with the ANSI standard, they all support at least the major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a similar manner. Note: Most of the SQL database programs also have their own proprietary extensions in addition to the SQL standard! Using SQL in Your Web Site To build a web site that shows some data from a database, you will need the following: , An RDBMS database program (i.e. MS Access, SQL Server, MySQL) , A server-side scripting language, like PHP or ASP , SQL , HTML / CSS RDBMS RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access. The data in RDBMS is stored in database objects called tables. A table is a collections of related data entries and it consists of columns and rows. Database Tables A database most often contains one or more tables. Each table is identified by a name (e.g. "Customers" or "Orders"). Tables contain records (rows) with data. Below is an example of a table called "Persons": P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The table above contains three records (one for each person) and five columns (P_Id, LastName, FirstName, Address, and City). SQL Statements Most of the actions you need to perform on a database are done with SQL statements. The following SQL statement will select all the records in the "Persons" table: SELECT * FROM Persons In this tutorial we will teach you all about the different SQL statements. Keep in Mind That... , SQL is not case sensitive Semicolon after SQL Statements? Some database systems require a semicolon at the end of each SQL statement. Semicolon is the standard way to separate each SQL statement in database systems that allow more than one SQL statement to be executed in the same call to the server. We are using MS Access and SQL Server 2000 and we do not have to put a semicolon after each SQL statement, but some database programs force you to use it. SQL DML and DDL SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data Definition Language (DDL). The query and update commands form the DML part of SQL: , SELECT - extracts data from a database , UPDATE - updates data in a database , DELETE - deletes data from a database , INSERT INTO - inserts new data into a database The DDL part of SQL permits database tables to be created or deleted. It also define indexes (keys), specify links between tables, and impose constraints between tables. The most important DDL statements in SQL are: , CREATE DATABASE - creates a new database , ALTER DATABASE - modifies a database , CREATE TABLE - creates a new table , ALTER TABLE - modifies a table , DROP TABLE - deletes a table , CREATE INDEX - creates an index (search key) , DROP INDEX - deletes an index The SQL SELECT Statement The SELECT statement is used to select data from a database. The result is stored in a result table, called the result-set. SQL SELECT Syntax SELECT column_name(s) FROM table_name and SELECT * FROM table_name Note: SQL is not case sensitive. SELECT is the same as select. An SQL SELECT Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the content of the columns named "LastName" and "FirstName" from the table above. We use the following SELECT statement: SELECT LastName,FirstName FROM Persons The result-set will look like this: LastName FirstName Hansen Ola Svendson Tove Pettersen Kari SELECT * Example Now we want to select all the columns from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons Tip: The asterisk (*) is a quick way of selecting all columns! The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The SQL SELECT DISTINCT Statement In a table, some of the columns may contain duplicate values. This is not a problem, however, sometimes you will want to list only the different (distinct) values in a table. The DISTINCT keyword can be used to return only distinct (different) values. SQL SELECT DISTINCT Syntax SELECT DISTINCT column_name(s) FROM table_name SELECT DISTINCT Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select only the distinct values from the column named "City" from the table above. We use the following SELECT statement: SELECT DISTINCT City FROM Persons The result-set will look like this: City Sandnes Stavanger The WHERE clause is used to filter records. The WHERE Clause The WHERE clause is used to extract only those records that fulfill a specified criterion. SQL WHERE Syntax SELECT column_name(s) FROM table_name WHERE column_name operator value WHERE Clause Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select only the persons living in the city "Sandnes" from the table above. We use the following SELECT statement: SELECT * FROM Persons WHERE City='Sandnes' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes Quotes Around Text Fields SQL uses single quotes around text values (most database systems will also accept double quotes). Although, numeric values should not be enclosed in quotes. For text values: This is correct: SELECT * FROM Persons WHERE FirstName='Tove' This is wrong: SELECT * FROM Persons WHERE FirstName=Tove For numeric values: This is correct: SELECT * FROM Persons WHERE Year=1965 This is wrong: SELECT * FROM Persons WHERE Year='1965' Operators Allowed in the WHERE Clause With the WHERE clause, the following operators can be used: Operator Description = Equal <> Not equal > Greater than < Less than >= Greater than or equal <= Less than or equal BETWEEN Between an inclusive range LIKE Search for a pattern IN If you know the exact value you want to return for at least one of the columns Note: In some versions of SQL the <> operator may be written as != The AND & OR operators are used to filter records based on more than one condition. The AND & OR Operators The AND operator displays a record if both the first condition and the second condition is true. The OR operator displays a record if either the first condition or the second condition is true. AND Operator Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select only the persons with the first name equal to "Tove" AND the last name equal to "Svendson": We use the following SELECT statement: SELECT * FROM Persons WHERE FirstName='Tove' AND LastName='Svendson' The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes OR Operator Example Now we want to select only the persons with the first name equal to "Tove" OR the first name equal to "Ola": We use the following SELECT statement: SELECT * FROM Persons WHERE FirstName='Tove' OR FirstName='Ola' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes Combining AND & OR You can also combine AND and OR (use parenthesis to form complex expressions). Now we want to select only the persons with the last name equal to "Svendson" AND the first name equal to "Tove" OR to "Ola": We use the following SELECT statement: SELECT * FROM Persons WHERE LastName='Svendson' AND (FirstName='Tove' OR FirstName='Ola') The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes The AND & OR operators are used to filter records based on more than one condition. The AND & OR Operators The AND operator displays a record if both the first condition and the second condition is true. The OR operator displays a record if either the first condition or the second condition is true. AND Operator Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select only the persons with the first name equal to "Tove" AND the last name equal to "Svendson": We use the following SELECT statement: SELECT * FROM Persons WHERE FirstName='Tove' AND LastName='Svendson' The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes OR Operator Example Now we want to select only the persons with the first name equal to "Tove" OR the first name equal to "Ola": We use the following SELECT statement: SELECT * FROM Persons WHERE FirstName='Tove' OR FirstName='Ola' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes Combining AND & OR You can also combine AND and OR (use parenthesis to form complex expressions). Now we want to select only the persons with the last name equal to "Svendson" AND the first name equal to "Tove" OR to "Ola": We use the following SELECT statement: SELECT * FROM Persons WHERE LastName='Svendson' AND (FirstName='Tove' OR FirstName='Ola') The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes The TOP Clause The TOP clause is used to specify the number of records to return. The TOP clause can be very useful on large tables with thousands of records. Returning a large number of records can impact on performance. Note: Not all database systems support the TOP clause. SQL SELECT TOP Syntax SELECT TOP number|percent column_name(s) FROM table_name SQL TOP Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger 4 Nilsen Tom Vingvn 23 Stavanger Now we want to select only the two first records in the table above. We use the following SELECT statement: SELECT TOP 2 * FROM Persons The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes SQL TOP PERCENT Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger 4 Nilsen Tom Vingvn 23 Stavanger Now we want to select only 50% of the records in the table above. We use the following SELECT statement: SELECT TOP 50 PERCENT * FROM Persons The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes SQL wildcards can be used when searching for data in a database. SQL Wildcards SQL wildcards can substitute for one or more characters when searching for data in a database. SQL wildcards must be used with the SQL LIKE operator. With SQL, the following wildcards can be used: Wildcard Description % A substitute for zero or more characters _ A substitute for exactly one character [charlist] Any single character in charlist [^charlist] Any single character not in charlist or [!charlist] SQL Wildcard Examples We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Using the % Wildcard Now we want to select the persons living in a city that starts with "sa" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE City LIKE 'sa%' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes Next, we want to select the persons living in a city that contains the pattern "nes" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE City LIKE '%nes%' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes Using the _ Wildcard Now we want to select the persons with a first name that starts with any character, followed by "la" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE FirstName LIKE '_la' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes Next, we want to select the persons with a last name that starts with "S", followed by any character, followed by "end", followed by any character, followed by "on" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE LastName LIKE 'S_end_on' The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes Using the [charlist] Wildcard Now we want to select the persons with a last name that starts with "b" or "s" or "p" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE LastName LIKE '[bsp]%' The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Next, we want to select the persons with a last name that do not start with "b" or "s" or "p" from the "Persons" table. We use the following SELECT statement: SELECT * FROM Persons WHERE LastName LIKE '[!bsp]%' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes The IN Operator The IN operator allows you to specify multiple values in a WHERE clause. SQL IN Syntax SELECT column_name(s) FROM table_name WHERE column_name IN (value1,value2,...) IN Operator Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the persons with a last name equal to "Hansen" or "Pettersen" from the table above. We use the following SELECT statement: SELECT * FROM Persons WHERE LastName IN ('Hansen','Pettersen') The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The BETWEEN operator is used in a WHERE clause to select a range of data between two values. The BETWEEN Operator The BETWEEN operator selects a range of data between two values. The values can be numbers, text, or dates. SQL BETWEEN Syntax SELECT column_name(s) FROM table_name WHERE column_name BETWEEN value1 AND value2 BETWEEN Operator Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the persons with a last name alphabetically between "Hansen" and "Pettersen" from the table above. We use the following SELECT statement: SELECT * FROM Persons WHERE LastName BETWEEN 'Hansen' AND 'Pettersen' The result-set will look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes Note: The BETWEEN operator is treated differently in different databases. In some databases a person with the LastName of "Hansen" or "Pettersen" will not be listed (BETWEEN only selects fields that are between and excluding the test values). In other databases a person with the last name of "Hansen" or "Pettersen" will be listed (BETWEEN selects fields that are between and including the test values). And in other databases a person with the last name of "Hansen" will be listed, but "Pettersen" will not be listed (BETWEEN selects fields between the test values, including the first test value and excluding the last test value). Therefore: Check how your database treats the BETWEEN operator. Example 2 To display the persons outside the range in the previous example, use NOT BETWEEN: SELECT * FROM Persons WHERE LastName NOT BETWEEN 'Hansen' AND 'Pettersen' The result-set will look like this: P_Id LastName FirstName Address City 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger With SQL, an alias name can be given to a table or to a column. SQL Alias You can give a table or a column another name by using an alias. This can be a good thing to do if you have very long or complex table names or column names. An alias name could be anything, but usually it is short. SQL Alias Syntax for Tables SELECT column_name(s) FROM table_name AS alias_name SQL Alias Syntax for Columns SELECT column_name AS alias_name FROM table_name Alias Example Assume we have a table called "Persons" and another table called "Product_Orders". We will give the table aliases of "p" an "po" respectively. Now we want to list all the orders that "Ola Hansen" is responsible for. We use the following SELECT statement: SELECT po.OrderID, p.LastName, p.FirstName FROM Persons AS p, Product_Orders AS po WHERE p.LastName='Hansen' WHERE p.FirstName='Ola' The same SELECT statement without aliases: SELECT Product_Orders.OrderID, Persons.LastName, Persons.FirstName FROM Persons, Product_Orders WHERE Persons.LastName='Hansen' WHERE Persons.FirstName='Ola' The JOIN keyword is used to query data from two or more tables, based on a relationship between certain columns in these tables. SQL JOIN The JOIN keyword is used in an SQL statement to query data from two or more tables, based on a relationship between certain columns in these tables. Tables in a database are often related to each other with keys. A primary key is a column with a unique value for each row. Each primary key value must be unique within the table. The purpose is to bind data together, across tables, without repeating all of the data in every table. Look at the "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Note that the "P_Id" column is the primary key in the "Persons" table. This means that no two rows can have the same P_Id. The P_Id distinguishes two persons even if they have the same name. Next, we have the "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 1 4 24562 1 5 34764 15 Note that the "O_Id" column is the primary key in the "Orders" table and that the "P_Id" column refers to the persons in the "Persons" table without using their names. Notice that the relationship between the two tables above is the "P_Id" column. Different SQL JOINs Before we continue with examples, we will list the types of JOIN you can use, and the differences between them. , JOIN: Return rows when there is at least one match in both tables , LEFT JOIN: Return all rows from the left table, even if there are no matches in the right table , RIGHT JOIN: Return all rows from the right table, even if there are no matches in the left table , FULL JOIN: Return rows when there is a match in one of the tables SQL INNER JOIN Keyword The INNER JOIN keyword return rows when there is at least one match in both tables. SQL INNER JOIN Syntax SELECT column_name(s) FROM table_name1 INNER JOIN table_name2 ON table_name1.column_name=table_name2.column_name PS: INNER JOIN is the same as JOIN. SQL INNER JOIN Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 1 4 24562 1 5 34764 15 Now we want to list all the persons with any orders. We use the following SELECT statement: SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons INNER JOIN Orders ON Persons.P_Id=Orders.P_Id ORDER BY Persons.LastName The result-set will look like this: LastName FirstName OrderNo Hansen Ola 22456 Hansen Ola 24562 Pettersen Kari 77895 Pettersen Kari 44678 The INNER JOIN keyword return rows when there is at least one match in both tables. If there are rows in "Persons" that do not have matches in "Orders", those rows will NOT be listed. SQL LEFT JOIN Keyword The LEFT JOIN keyword returns all rows from the left table (table_name1), even if there are no matches in the right table (table_name2). SQL LEFT JOIN Syntax SELECT column_name(s) FROM table_name1 LEFT JOIN table_name2 ON table_name1.column_name=table_name2.column_name PS: In some databases LEFT JOIN is called LEFT OUTER JOIN. SQL LEFT JOIN Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 1 4 24562 1 5 34764 15 Now we want to list all the persons and their orders - if any, from the tables above. We use the following SELECT statement: SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons LEFT JOIN Orders ON Persons.P_Id=Orders.P_Id ORDER BY Persons.LastName The result-set will look like this: LastName FirstName OrderNo Hansen Ola 22456 Hansen Ola 24562 Pettersen Kari 77895 Pettersen Kari 44678 Svendson Tove The LEFT JOIN keyword returns all the rows from the left table (Persons), even if there are no matches in the right table (Orders). SQL RIGHT JOIN Keyword The RIGHT JOIN keyword Return all rows from the right table (table_name2), even if there are no matches in the left table (table_name1). SQL RIGHT JOIN Syntax SELECT column_name(s) FROM table_name1 RIGHT JOIN table_name2 ON table_name1.column_name=table_name2.column_name PS: In some databases RIGHT JOIN is called RIGHT OUTER JOIN. SQL RIGHT JOIN Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 1 4 24562 1 5 34764 15 Now we want to list all the orders with containing persons - if any, from the tables above. We use the following SELECT statement: SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons RIGHT JOIN Orders ON Persons.P_Id=Orders.P_Id ORDER BY Persons.LastName The result-set will look like this: LastName FirstName OrderNo Hansen Ola 22456 Hansen Ola 24562 Pettersen Kari 77895 Pettersen Kari 44678 34764 The RIGHT JOIN keyword returns all the rows from the right table (Orders), even if there are no matches in the left table (Persons). SQL FULL JOIN Keyword The FULL JOIN keyword return rows when there is a match in one of the tables. SQL FULL JOIN Syntax SELECT column_name(s) FROM table_name1 FULL JOIN table_name2 ON table_name1.column_name=table_name2.column_name SQL FULL JOIN Example The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 1 4 24562 1 5 34764 15 Now we want to list all the persons and their orders, and all the orders with their persons. We use the following SELECT statement: SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons FULL JOIN Orders ON Persons.P_Id=Orders.P_Id ORDER BY Persons.LastName The result-set will look like this: LastName FirstName OrderNo Hansen Ola 22456 Hansen Ola 24562 Pettersen Kari 77895 Pettersen Kari 44678 Svendson Tove 34764 The FULL JOIN keyword returns all the rows from the left table (Persons), and all the rows from the right table (Orders). If there are rows in "Persons" that do not have matches in "Orders", or if there are rows in "Orders" that do not have matches in "Persons", those rows will be listed as well. The SQL UNION Operator The UNION operator is used to combine the result-set of two or more SELECT statements. Notice that each SELECT statement within the UNION must have the same number of columns. The columns must also have similar data types. Also, the columns in each SELECT statement must be in the same order. SQL UNION Syntax SELECT column_name(s) FROM table_name1 UNION SELECT column_name(s) FROM table_name2 Note: The UNION operator selects only distinct values by default. To allow duplicate values, use UNION ALL. SQL UNION ALL Syntax SELECT column_name(s) FROM table_name1 UNION ALL SELECT column_name(s) FROM table_name2 PS: The column names in the result-set of a UNION are always equal to the column names in the first SELECT statement in the UNION. SQL UNION Example Look at the following tables: "Employees_Norway": E_ID E_Name 01 Hansen, Ola 02 Svendson, Tove 03 Svendson, Stephen 04 Pettersen, Kari "Employees_USA": E_ID E_Name 01 Turner, Sally 02 Kent, Clark 03 Svendson, Stephen 04 Scott, Stephen Now we want to list all the different employees in Norway and USA. We use the following SELECT statement: SELECT E_Name FROM Employees_Norway UNION SELECT E_Name FROM Employees_USA The result-set will look like this: E_Name Hansen, Ola Svendson, Tove Svendson, Stephen Pettersen, Kari Turner, Sally Kent, Clark Scott, Stephen Note: This command cannot be used to list all employees in Norway and USA. In the example above we have two employees with equal names, and only one of them will be listed. The UNION command selects only distinct values. SQL UNION ALL Example Now we want to list all employees in Norway and USA: SELECT E_Name FROM Employees_Norway UNION ALL SELECT E_Name FROM Employees_USA Result E_Name Hansen, Ola Svendson, Tove Svendson, Stephen Pettersen, Kari Turner, Sally Kent, Clark Svendson, Stephen Scott, Stephen The SQL SELECT INTO statement can be used to create backup copies of tables. The SQL SELECT INTO Statement The SELECT INTO statement selects data from one table and inserts it into a different table. The SELECT INTO statement is most often used to create backup copies of tables. SQL SELECT INTO Syntax We can select all columns into the new table: SELECT * INTO new_table_name [IN externaldatabase] FROM old_tablename Or we can select only the columns we want into the new table: SELECT column_name(s) INTO new_table_name [IN externaldatabase] FROM old_tablename SQL SELECT INTO Example Make a Backup Copy - Now we want to make an exact copy of the data in our "Persons" table. We use the following SQL statement: SELECT * INTO Persons_Backup FROM Persons We can also use the IN clause to copy the table into another database: SELECT * INTO Persons_Backup IN 'Backup.mdb' FROM Persons We can also copy only a few fields into the new table: SELECT LastName,FirstName INTO Persons_Backup FROM Persons SQL SELECT INTO - With a WHERE Clause We can also add a WHERE clause. The following SQL statement creates a "Persons_Backup" table with only the persons who lives in the city "Sandnes": SELECT LastName,Firstname INTO Persons_Backup FROM Persons WHERE City='Sandnes' SQL SELECT INTO - Joined Tables Selecting data from more than one table is also possible. The following example creates a "Persons_Order_Backup" table contains data from the two tables "Persons" and "Orders": SELECT Persons.LastName,Orders.OrderNo INTO Persons_Order_Backup FROM Persons INNER JOIN Orders ON Persons.P_Id=Orders.P_Id SQL FUNCTION SQL has many built-in functions for performing calculations on data. SQL Aggregate Functions SQL aggregate functions return a single value, calculated from values in a column. Useful aggregate functions: , AVG() - Returns the average value , COUNT() - Returns the number of rows , FIRST() - Returns the first value , LAST() - Returns the last value , MAX() - Returns the largest value , MIN() - Returns the smallest value , SUM() - Returns the sum SQL Scalar functions SQL scalar functions return a single value, based on the input value. Useful scalar functions: , UCASE() - Converts a field to upper case , LCASE() - Converts a field to lower case , MID() - Extract characters from a text field , LEN() - Returns the length of a text field , ROUND() - Rounds a numeric field to the number of decimals specified , NOW() - Returns the current system date and time , FORMAT() - Formats how a field is to be displayed Tip: The aggregate functions and the scalar functions will be explained in details in the next chapters. The AVG() Function The AVG() function returns the average value of a numeric column. SQL AVG() Syntax SELECT AVG(column_name) FROM table_name SQL AVG() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the average value of the "OrderPrice" fields. We use the following SQL statement: SELECT AVG(OrderPrice) AS OrderAverage FROM Orders The result-set will look like this: OrderAverage 950 Now we want to find the customers that have an OrderPrice value higher then the average OrderPrice value. We use the following SQL statement: SELECT Customer FROM Orders WHERE OrderPrice>(SELECT AVG(OrderPrice) FROM Orders) The result-set will look like this: Customer Hansen Nilsen Jensen SQL COUNT(column_name) Syntax The COUNT(column_name) function returns the number of values (NULL values will not be counted) of the specified column: SELECT COUNT(column_name) FROM table_name SQL COUNT(*) Syntax The COUNT(*) function returns the number of records in a table: SELECT COUNT(*) FROM table_name SQL COUNT(DISTINCT column_name) Syntax The COUNT(DISTINCT column_name) function returns the number of distinct values of the specified column: SELECT COUNT(DISTINCT column_name) FROM table_name Note: COUNT(DISTINCT) works with ORACLE and Microsoft SQL Server, but not with Microsoft Access. SQL COUNT(column_name) Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to count the number of orders from "Customer Nilsen". We use the following SQL statement: SELECT COUNT(Customer) AS CustomerNilsen FROM Orders WHERE Customer='Nilsen' The result of the SQL statement above will be 2, because the customer Nilsen has made 2 orders in total: CustomerNilsen 2 SQL COUNT(*) Example If we omit the WHERE clause, like this: SELECT COUNT(*) AS NumberOfOrders FROM Orders The result-set will look like this: NumberOfOrders 6 which is the total number of rows in the table. SQL COUNT(DISTINCT column_name) Example Now we want to count the number of unique customers in the "Orders" table. We use the following SQL statement: SELECT COUNT(DISTINCT Customer) AS NumberOfCustomers FROM Orders The result-set will look like this: NumberOfCustomers 3 which is the number of unique customers (Hansen, Nilsen, and Jensen) in the "Orders" table. SQL FIRST() Function The FIRST() Function The FIRST() function returns the first value of the selected column. SQL FIRST() Syntax SELECT FIRST(column_name) FROM table_name SQL FIRST() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the first value of the "OrderPrice" column. We use the following SQL statement: SELECT FIRST(OrderPrice) AS FirstOrderPrice FROM Orders The result-set will look like this: FirstOrderPrice 1000 SQL LAST() Function The LAST() Function The LAST() function returns the last value of the selected column. SQL LAST() Syntax SELECT LAST(column_name) FROM table_name SQL LAST() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the last value of the "OrderPrice" column. We use the following SQL statement: SELECT LAST(OrderPrice) AS LastOrderPrice FROM Orders The result-set will look like this: LastOrderPrice 100 SQL MAX() Function The MAX() Function The MAX() function returns the largest value of the selected column. SQL MAX() Syntax SELECT MAX(column_name) FROM table_name SQL MAX() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the largest value of the "OrderPrice" column. We use the following SQL statement: SELECT MAX(OrderPrice) AS LargestOrderPrice FROM Orders The result-set will look like this: LargestOrderPrice 2000 SQL MIN() Function The MIN() Function The MIN() function returns the smallest value of the selected column. SQL MIN() Syntax SELECT MIN(column_name) FROM table_name SQL MIN() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the smallest value of the "OrderPrice" column. We use the following SQL statement: SELECT MIN(OrderPrice) AS SmallestOrderPrice FROM Orders The result-set will look like this: SmallestOrderPrice 100 The SUM() Function The SUM() Function The SUM() function returns the total sum of a numeric column. SQL SUM() Syntax SELECT SUM(column_name) FROM table_name SQL SUM() Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the sum of all "OrderPrice" fields". We use the following SQL statement: SELECT SUM(OrderPrice) AS OrderTotal FROM Orders The result-set will look like this: OrderTotal 5700 The HAVING Clause The HAVING clause was added to SQL because the WHERE keyword could not be used with aggregate functions. SQL HAVING Syntax SELECT column_name, aggregate_function(column_name) FROM table_name WHERE column_name operator value GROUP BY column_name HAVING aggregate_function(column_name) operator value SQL HAVING Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find if any of the customers have a total order of less than 2000. We use the following SQL statement: SELECT Customer,SUM(OrderPrice) FROM Orders GROUP BY Customer HAVING SUM(OrderPrice)<2000 The result-set will look like this: Customer SUM(OrderPrice) Nilsen 1700 Now we want to find if the customers "Hansen" or "Jensen" have a total order of more than 1500. We add an ordinary WHERE clause to the SQL statement: SELECT Customer,SUM(OrderPrice) FROM Orders WHERE Customer='Hansen' OR Customer='Jensen' GROUP BY Customer HAVING SUM(OrderPrice)>1500 The result-set will look like this: Customer SUM(OrderPrice) Hansen 2000 Jensen 2000 ……… ….. The GROUP BY Statement The GROUP BY statement is used in conjunction with the aggregate functions to group the result-set by one or more columns. SQL GROUP BY Syntax SELECT column_name, aggregate_function(column_name) FROM table_name WHERE column_name operator value GROUP BY column_name SQL GROUP BY Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find the total sum (total order) of each customer. We will have to use the GROUP BY statement to group the customers. We use the following SQL statement: SELECT Customer,SUM(OrderPrice) FROM Orders GROUP BY Customer The result-set will look like this: Customer SUM(OrderPrice) Hansen 2000 Nilsen 1700 Jensen 2000 Nice! Isn't it? :) Let's see what happens if we omit the GROUP BY statement: SELECT Customer,SUM(OrderPrice) FROM Orders The result-set will look like this: Customer SUM(OrderPrice) Hansen 5700 Nilsen 5700 Hansen 5700 Hansen 5700 Jensen 5700 Nilsen 5700 The result-set above is not what we wanted. Explanation of why the above SELECT statement cannot be used: The SELECT statement above has two columns specified (Customer and SUM(OrderPrice). The "SUM(OrderPrice)" returns a single value (that is the total sum of the "OrderPrice" column), while "Customer" returns 6 values (one value for each row in the "Orders" table). This will therefore not give us the correct result. However, you have seen that the GROUP BY statement solves this problem. GROUP BY More Than One Column We can also use the GROUP BY statement on more than one column, like this: SELECT Customer,OrderDate,SUM(OrderPrice) FROM Orders GROUP BY Customer,OrderDate The HAVING Clause The HAVING clause was added to SQL because the WHERE keyword could not be used with aggregate functions. SQL HAVING Syntax SELECT column_name, aggregate_function(column_name) FROM table_name WHERE column_name operator value GROUP BY column_name HAVING aggregate_function(column_name) operator value SQL HAVING Example We have the following "Orders" table: O_Id OrderDate OrderPrice Customer 1 2008/11/12 1000 Hansen 2 2008/10/23 1600 Nilsen 3 2008/09/02 700 Hansen 4 2008/09/03 300 Hansen 5 2008/08/30 2000 Jensen 6 2008/10/04 100 Nilsen Now we want to find if any of the customers have a total order of less than 2000. We use the following SQL statement: SELECT Customer,SUM(OrderPrice) FROM Orders GROUP BY Customer HAVING SUM(OrderPrice)<2000 The result-set will look like this: Customer SUM(OrderPrice) Nilsen 1700 Now we want to find if the customers "Hansen" or "Jensen" have a total order of more than 1500. We add an ordinary WHERE clause to the SQL statement: SELECT Customer,SUM(OrderPrice) FROM Orders WHERE Customer='Hansen' OR Customer='Jensen' GROUP BY Customer HAVING SUM(OrderPrice)>1500 The result-set will look like this: Customer SUM(OrderPrice) Hansen 2000 Jensen 2000 The UCASE() Function The UCASE() function converts the value of a field to uppercase. SQL UCASE() Syntax SELECT UCASE(column_name) FROM table_name SQL UCASE() Example We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the content of the "LastName" and "FirstName" columns above, and convert the "LastName" column to uppercase. We use the following SELECT statement: SELECT UCASE(LastName) as LastName,FirstName FROM Persons The result-set will look like this: LastName FirstName HANSEN Ola SVENDSON Tove PETTERSEN Kari The LCASE() Function The LCASE() function converts the value of a field to lowercase. SQL LCASE() Syntax SELECT LCASE(column_name) FROM table_name SQL LCASE() Example We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the content of the "LastName" and "FirstName" columns above, and convert the "LastName" column to lowercase. We use the following SELECT statement: SELECT LCASE(LastName) as LastName,FirstName FROM Persons The result-set will look like this: LastName FirstName hansen Ola svendson Tove pettersen Kari The MID() Function The MID() function is used to extract characters from a text field. SQL MID() Syntax SELECT MID(column_name,start[,length]) FROM table_name Parameter Description column_name Required. The field to extract characters from. start Required. Specifies the starting position (starts at 1). length Optional. The number of characters to return. If omitted, the MID() function returns the rest of the text. SQL MID() Example We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to extract the first four characters of the "City" column above. We use the following SELECT statement: SELECT MID(City,1,4) as SmallCity FROM Persons The result-set will look like this: SmallCity Sand Sand Stav The LEN() Function The LEN() function returns the length of the value in a text field. SQL LEN() Syntax SELECT LEN(column_name) FROM table_name SQL LEN() Example We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to select the length of the values in the "Address" column above. We use the following SELECT statement: SELECT LEN(Address) as LengthOfAddress FROM Persons The result-set will look like this: LengthOfAddress 12 9 9 The ROUND() Function The ROUND() function is used to round a numeric field to the number of decimals specified. SQL ROUND() Syntax SELECT ROUND(column_name,decimals) FROM table_name Parameter Description column_name Required. The field to round. decimals Required. Specifies the number of decimals to be returned. SQL ROUND() Example We have the following "Products" table: Prod_Id ProductName Unit UnitPrice 1 Jarlsberg 1000 g 10.45 2 Mascarpone 1000 g 32.56 3 Gorgonzola 1000 g 15.67 Now we want to display the product name and the price rounded to the nearest integer. We use the following SELECT statement: SELECT ProductName, ROUND(UnitPrice,0) as UnitPrice FROM Persons The result-set will look like this: ProductName UnitPrice Jarlsberg 10 Mascarpone 33 Gorgonzola 16 The NOW() Function The NOW() function returns the current system date and time. SQL NOW() Syntax SELECT NOW() FROM table_name SQL NOW() Example We have the following "Products" table: Prod_Id ProductName Unit UnitPrice 1 Jarlsberg 1000 g 10.45 2 Mascarpone 1000 g 32.56 3 Gorgonzola 1000 g 15.67 Now we want to display the products and prices per today's date. We use the following SELECT statement: SELECT ProductName, UnitPrice, Now() as PerDate FROM Persons The result-set will look like this: ProductName UnitPrice PerDate Jarlsberg 10.45 10/7/2008 11:25:02 AM Mascarpone 32.56 10/7/2008 11:25:02 AM Gorgonzola 15.67 10/7/2008 11:25:02 AM The FORMAT() Function The FORMAT() function is used to format how a field is to be displayed. SQL FORMAT() Syntax SELECT FORMAT(column_name,format) FROM table_name Parameter Description column_name Required. The field to be formatted. format Required. Specifies the format. SQL FORMAT() Example We have the following "Products" table: Prod_Id ProductName Unit UnitPrice 1 Jarlsberg 1000 g 10.45 2 Mascarpone 1000 g 32.56 3 Gorgonzola 1000 g 15.67 Now we want to display the products and prices per today's date (with today's date displayed in the following format "YYYY-MM-DD"). We use the following SELECT statement: SELECT ProductName, UnitPrice, FORMAT(Now(),'YYYY-MM-DD') as PerDate FROM Persons The result-set will look like this: ProductName UnitPrice PerDate Jarlsberg 10.45 2008-10-07 Mascarpone 32.56 2008-10-07 Gorgonzola 15.67 2008-10-07 NULL values represent missing unknown data. By default, a table column can hold NULL values. This chapter will explain the IS NULL and IS NOT NULL operators. SQL NULL Values If a column in a table is optional, we can insert a new record or update an existing record without adding a value to this column. This means that the field will be saved with a NULL value. NULL values are treated differently from other values. NULL is used as a placeholder for unknown or inapplicable values. Note: It is not possible to compare NULL and 0; they are not equivalent. SQL Working with NULL Values Look at the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Stavanger Suppose that the "Address" column in the "Persons" table is optional. This means that if we insert a record with no value for the "Address" column, the "Address" column will be saved with a NULL value. How can we test for NULL values? It is not possible to test for NULL values with comparison operators, such as =, <, or <>. We will have to use the IS NULL and IS NOT NULL operators instead. SQL IS NULL How do we select only the records with NULL values in the "Address" column? We will have to use the IS NULL operator: SELECT LastName,FirstName,Address FROM Persons WHERE Address IS NULL The result-set will look like this: LastName FirstName Address Hansen Ola Pettersen Kari Tip: Always use IS NULL to look for NULL values. SQL IS NOT NULL How do we select only the records with no NULL values in the "Address" column? We will have to use the IS NOT NULL operator: SELECT LastName,FirstName,Address FROM Persons WHERE Address IS NOT NULL The result-set will look like this: LastName FirstName Address Svendson Tove Borgvn 23 In the next chapter we will look at the ISNULL(), NVL(), IFNULL() and COALESCE() functions. SQL ISNULL(), NVL(), IFNULL() and COALESCE() Functions Look at the following "Products" table: P_Id ProductName UnitPrice UnitsInStock UnitsOnOrder 1 Jarlsberg 10.45 16 15 2 Mascarpone 32.56 23 3 Gorgonzola 15.67 9 20 Suppose that the "UnitsOnOrder" column is optional, and may contain NULL values. We have the following SELECT statement: SELECT ProductName,UnitPrice*(UnitsInStock+UnitsOnOrder) FROM Products In the example above, if any of the "UnitsOnOrder" values are NULL, the result is NULL. Microsoft's ISNULL() function is used to specify how we want to treat NULL values. The NVL(), IFNULL(), and COALESCE() functions can also be used to achieve the same result. In this case we want NULL values to be zero. Below, if "UnitsOnOrder" is NULL it will not harm the calculation, because ISNULL() returns a zero if the value is NULL: SQL Server / MS Access SELECT ProductName,UnitPrice*(UnitsInStock+ISNULL(UnitsOnOrder,0)) FROM Products Oracle Oracle does not have an ISNULL() function. However, we can use the NVL() function to achieve the same result: SELECT ProductName,UnitPrice*(UnitsInStock+NVL(UnitsOnOrder,0)) FROM Products MySQL MySQL does have an ISNULL() function. However, it works a little bit different from Microsoft's ISNULL() function. In MySQL we can use the IFNULL() function, like this: SELECT ProductName,UnitPrice*(UnitsInStock+IFNULL(UnitsOnOrder,0)) FROM Products or we can use the COALESCE() function, like this: SELECT ProductName,UnitPrice*(UnitsInStock+COALESCE(UnitsOnOrder,0)) FROM Products A view is a virtual table. SQL CREATE VIEW Statement In SQL, a view is a virtual table based on the result-set of an SQL statement. A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database. You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were coming from one single table. SQL CREATE VIEW Syntax CREATE VIEW view_name AS SELECT column_name(s) FROM table_name WHERE condition Note: A view always shows up-to-date data! The database engine recreates the data, using the view's SQL statement, every time a user queries a view. SQL CREATE VIEW Examples If you have the Northwind database you can see that it has several views installed by default. The view "Current Product List" lists all active products (products that are not discontinued) from the "Products" table. The view is created with the following SQL: CREATE VIEW [Current Product List] AS SELECT ProductID,ProductName FROM Products WHERE Discontinued=No We can query the view above as follows: SELECT * FROM [Current Product List] Another view in the Northwind sample database selects every product in the "Products" table with a unit price higher than the average unit price: CREATE VIEW [Products Above Average Price] AS SELECT ProductName,UnitPrice FROM Products WHERE UnitPrice>(SELECT AVG(UnitPrice) FROM Products) We can query the view above as follows: SELECT * FROM [Products Above Average Price] Another view in the Northwind database calculates the total sale for each category in 1997. Note that this view selects its data from another view called "Product Sales for 1997": CREATE VIEW [Category Sales For 1997] AS SELECT DISTINCT CategoryName,Sum(ProductSales) AS CategorySales FROM [Product Sales for 1997] GROUP BY CategoryName We can query the view above as follows: SELECT * FROM [Category Sales For 1997] We can also add a condition to the query. Now we want to see the total sale only for the category "Beverages": SELECT * FROM [Category Sales For 1997] WHERE CategoryName='Beverages' SQL Dropping a View You can delete a view with the DROP VIEW command. SQL DROP VIEW Syntax DROP VIEW view_name 2. DDL SQL Data Types Data types and ranges for Microsoft Access, MySQL and SQL Server. Microsoft Access Data Types Data type Description Storage Text Use for text or combinations of text and numbers. 255 characters maximum Memo Memo is used for larger amounts of text. Stores up to 65,536 characters. Note: You cannot sort a memo field. However, they are searchable Byte Allows whole numbers from 0 to 255 1 byte Integer Allows whole numbers between -32,768 and 32,767 2 bytes Long Allows whole numbers between -2,147,483,648 and 2,147,483,647 4 bytes Single Single precision floating-point. Will handle most decimals 4 bytes Double Double precision floating-point. Will handle most decimals 8 bytes Currency Use for currency. Holds up to 15 digits of whole dollars, plus 4 8 bytes decimal places. Tip: You can choose which country's currency to use AutoNumber AutoNumber fields automatically give each record its own number, 4 bytes usually starting at 1 Date/Time Use for dates and times 8 bytes Yes/No A logical field can be displayed as Yes/No, True/False, or On/Off. In 1 bit code, use the constants True and False (equivalent to -1 and 0). Note: Null values are not allowed in Yes/No fields Ole Object Can store pictures, audio, video, or other BLOBs (Binary Large up to OBjects) 1GB Hyperlink Contain links to other files, including web pages Lookup Wizard Let you type a list of options, which can then be chosen from a drop-4 bytes down list MySQL Data Types In MySQL there are three main types : text, number, and Date/Time types. Text types: Data type Description CHAR(size) Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis. Can store up to 255 characters VARCHAR(size) Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis. Can store up to 255 characters. Note: If you put a greater value than 255 it will be converted to a TEXT type TINYTEXT Holds a string with a maximum length of 255 characters TEXT Holds a string with a maximum length of 65,535 characters BLOB For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters MEDIUMBLOB For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of data LONGTEXT Holds a string with a maximum length of 4,294,967,295 characters LONGBLOB For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of data ENUM(x,y,z,etc.) Let you enter a list of possible values. You can list up to 65535 values in an ENUM list. If a value is inserted that is not in the list, a blank value will be inserted. Note: The values are sorted in the order you enter them. You enter the possible values in this format: ENUM('X','Y','Z') SET Similar to ENUM except that SET may contain up to 64 list items and can store more than one choice Number types: Data type Description TINYINT(size) -128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits may be specified in parenthesis SMALLINT(size) -32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number of digits may be specified in parenthesis MEDIUMINT(size) -8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum number of digits may be specified in parenthesis INT(size) -2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The maximum number of digits may be specified in parenthesis BIGINT(size) -9223372036854775808 to 9223372036854775807 normal. 0 to 18446744073709551615 UNSIGNED*. The maximum number of digits may be specified in parenthesis FLOAT(size,d) A small number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter DOUBLE(size,d) A large number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter DECIMAL(size,d) A DOUBLE stored as a string , allowing for a fixed decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter *The integer types have an extra option called UNSIGNED. Normally, the integer goes from an negative to positive value. Adding the UNSIGNED attribute will move that range up so it starts at zero instead of a negative number. Date types: Data type Description DATE() A date. Format: YYYY-MM-DD Note: The supported range is from '1000-01-01' to '9999-12-31' DATETIME() *A date and time combination. Format: YYYY-MM-DD HH:MM:SS Note: The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59' TIMESTAMP() *A timestamp. TIMESTAMP values are stored as the number of seconds since the Unix epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD HH:MM:SS Note: The supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07' UTC TIME() A time. Format: HH:MM:SS Note: The supported range is from '-838:59:59' to '838:59:59' YEAR() A year in two-digit or four-digit format. Note: Values allowed in four-digit format: 1901 to 2155. Values allowed in two- digit format: 70 to 69, representing years from 1970 to 2069 *Even if DATETIME and TIMESTAMP return the same format, they work very differently. In an INSERT or UPDATE query, the TIMESTAMP automatically set itself to the current date and time. TIMESTAMP also accepts various formats, like YYYYMMDDHHMMSS, YYMMDDHHMMSS, YYYYMMDD, or YYMMDD. SQL Server Data Types Character strings: Data type Description Storage char(n) Fixed-length character string. Maximum 8,000 characters n varchar(n) Variable-length character string. Maximum 8,000 characters varchar(max) Variable-length character string. Maximum 1,073,741,824 characters text Variable-length character string. Maximum 2GB of text data Unicode strings: Data type Description Storage nchar(n) Fixed-length Unicode data. Maximum 4,000 characters nvarchar(n) Variable-length Unicode data. Maximum 4,000 characters nvarchar(max) Variable-length Unicode data. Maximum 536,870,912 characters ntext Variable-length Unicode data. Maximum 2GB of text data Binary types: Data type Description Storage bit Allows 0, 1, or NULL binary(n) Fixed-length binary data. Maximum 8,000 bytes varbinary(n) Variable-length binary data. Maximum 8,000 bytes varbinary(max) Variable-length binary data. Maximum 2GB image Variable-length binary data. Maximum 2GB Number types: Data type Description Storage tinyint Allows whole numbers from 0 to 255 1 byte smallint Allows whole numbers between -32,768 and 32,767 2 bytes int Allows whole numbers between -2,147,483,648 and 2,147,483,647 4 bytes bigint Allows whole numbers between -9,223,372,036,854,775,808 and 8 bytes 9,223,372,036,854,775,807 decimal(p,s) Fixed precision and scale numbers. 5-17 bytes Allows numbers from -10^38 +1 to 10^38 –1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 numeric(p,s) Fixed precision and scale numbers. 5-17 bytes Allows numbers from -10^38 +1 to 10^38 –1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 smallmoney Monetary data from -214,748.3648 to 214,748.3647 4 bytes money Monetary data from -922,337,203,685,477.5808 to 8 bytes 922,337,203,685,477.5807 float(n) Floating precision number data from -1.79E + 308 to 1.79E + 308. 4 or 8 bytes The n parameter indicates whether the field should hold 4 or 8 bytes. float(24) holds a 4-byte field and float(53) holds an 8-byte field. Default value of n is 53. real Floating precision number data from -3.40E + 38 to 3.40E + 38 4 bytes Date types: Data type Description Storage datetime From January 1, 1753 to December 31, 9999 with an accuracy of 8 bytes 3.33 milliseconds datetime2 From January 1, 0001 and December 31, 9999 with an accuracy of 6-8 bytes 100 nanoseconds smalldatetime From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute 4 bytes date Store a date only. From January 1, 0001 to December 31, 9999 3 bytes time Store a time only to an accuracy of 100 nanoseconds 3-5 bytes datetimeoffset The same as datetime2 with the addition of a time zone offset 8-10 bytes timestamp Stores a unique number that gets updated every time a row gets created or modified. The timestamp value is based upon an internal clock and does not correspond to real time. Each table may have only one timestamp variable Other data types: Data type Description sql_variant Stores up to 8,000 bytes of data of various data types, except text, ntext, and timestamp uniqueidentifier Stores a globally unique identifier (GUID) xml Stores XML formatted data. Maximum 2GB cursor Stores a reference to a cursor used for database operations table Stores a result-set for later processing The CREATE DATABASE Statement The CREATE DATABASE statement is used to create a database. SQL CREATE DATABASE Syntax CREATE DATABASE database_name CREATE DATABASE Example Now we want to create a database called "my_db". We use the following CREATE DATABASE statement: CREATE DATABASE my_db Database tables can be added with the CREATE TABLE statement. The CREATE TABLE Statement The CREATE TABLE statement is used to create a table in a database. SQL CREATE TABLE Syntax CREATE TABLE table_name ( column_name1 data_type, column_name2 data_type, column_name3 data_type, .... ) The data type specifies what type of data the column can hold. For a complete reference of all the data types available in MS Access, MySQL, and SQL Server, go to our complete Data Types reference. CREATE TABLE Example Now we want to create a table called "Persons" that contains five columns: P_Id, LastName, FirstName, Address, and City. We use the following CREATE TABLE statement: CREATE TABLE Persons ( P_Id int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255) ) The P_Id column is of type int and will hold a number. The LastName, FirstName, Address, and City columns are of type varchar with a maximum length of 255 characters. The empty "Persons" table will now look like this: P_Id LastName FirstName Address City The empty table can be filled with data with the INSERT INTO statement. SQL Constraints Constraints are used to limit the type of data that can go into a table. Constraints can be specified when a table is created (with the CREATE TABLE statement) or after the table is created (with the ALTER TABLE statement). We will focus on the following constraints: , NOT NULL , UNIQUE , PRIMARY KEY , FOREIGN KEY , CHECK , DEFAULT The next chapters will describe each constraint in details. By default, a table column can hold NULL values. SQL NOT NULL Constraint The NOT NULL constraint enforces a column to NOT accept NULL values. The NOT NULL constraint enforces a field to always contain a value. This means that you cannot insert a new record, or update a record without adding a value to this field. The following SQL enforces the "P_Id" column and the "LastName" column to not accept NULL values: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255) ) SQL UNIQUE Constraint The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of columns. A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it. Note that you can have have many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table. SQL UNIQUE Constraint on CREATE TABLE The following SQL creates a UNIQUE constraint on the "P_Id" column when the "Persons" table is created: MySQL: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), UNIQUE (P_Id) ) SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL UNIQUE, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255) ) To allow naming of a UNIQUE constraint, and for defining a UNIQUE constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName) ) SQL UNIQUE Constraint on ALTER TABLE To create a UNIQUE constraint on the "P_Id" column when the table is already created, use the following SQL: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD UNIQUE (P_Id) To allow naming of a UNIQUE constraint, and for defining a UNIQUE constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName) To DROP a UNIQUE Constraint To drop a UNIQUE constraint, use the following SQL: MySQL: ALTER TABLE Persons DROP INDEX uc_PersonID SQL Server / Oracle / MS Access: ALTER TABLE Persons DROP CONSTRAINT uc_PersonID SQL PRIMARY KEY Constraint The PRIMARY KEY constraint uniquely identifies each record in a database table. Primary keys must contain unique values. A primary key column cannot contain NULL values. Each table should have a primary key, and each table can have only one primary key. SQL PRIMARY KEY Constraint on CREATE TABLE The following SQL creates a PRIMARY KEY on the "P_Id" column when the "Persons" table is created: MySQL: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), PRIMARY KEY (P_Id) ) SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL PRIMARY KEY, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255) ) To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName) ) SQL PRIMARY KEY Constraint on ALTER TABLE To create a PRIMARY KEY constraint on the "P_Id" column when the table is already created, use the following SQL: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD PRIMARY KEY (P_Id) To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName) Note: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must already have been declared to not contain NULL values (when the table was first created). To DROP a PRIMARY KEY Constraint To drop a PRIMARY KEY constraint, use the following SQL: MySQL: ALTER TABLE Persons DROP PRIMARY KEY SQL Server / Oracle / MS Access: ALTER TABLE Persons DROP CONSTRAINT pk_PersonID SQL FOREIGN KEY Constraint A FOREIGN KEY in one table points to a PRIMARY KEY in another table. Let's illustrate the foreign key with an example. Look at the following two tables: The "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The "Orders" table: O_Id OrderNo P_Id 1 77895 3 2 44678 3 3 22456 2 4 24562 1 Note that the "P_Id" column in the "Orders" table points to the "P_Id" column in the "Persons" table. The "P_Id" column in the "Persons" table is the PRIMARY KEY in the "Persons" table. The "P_Id" column in the "Orders" table is a FOREIGN KEY in the "Orders" table. The FOREIGN KEY constraint is used to prevent actions that would destroy link between tables. The FOREIGN KEY constraint also prevents that invalid data is inserted into the foreign key column, because it has to be one of the values contained in the table it points to. SQL FOREIGN KEY Constraint on CREATE TABLE The following SQL creates a FOREIGN KEY on the "P_Id" column when the "Orders" table is created: MySQL: CREATE TABLE Orders ( O_Id int NOT NULL, OrderNo int NOT NULL, P_Id int, PRIMARY KEY (O_Id), FOREIGN KEY (P_Id) REFERENCES Persons(P_Id) ) SQL Server / Oracle / MS Access: CREATE TABLE Orders ( O_Id int NOT NULL PRIMARY KEY, OrderNo int NOT NULL, P_Id int FOREIGN KEY REFERENCES Persons(P_Id) ) To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: CREATE TABLE Orders ( O_Id int NOT NULL, OrderNo int NOT NULL, P_Id int, PRIMARY KEY (O_Id), CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id) REFERENCES Persons(P_Id) ) SQL FOREIGN KEY Constraint on ALTER TABLE To create a FOREIGN KEY constraint on the "P_Id" column when the "Orders" table is already created, use the following SQL: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Orders ADD FOREIGN KEY (P_Id) REFERENCES Persons(P_Id) To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Orders ADD CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id) REFERENCES Persons(P_Id) To DROP a FOREIGN KEY Constraint To drop a FOREIGN KEY constraint, use the following SQL: MySQL: ALTER TABLE Orders DROP FOREIGN KEY fk_PerOrders SQL Server / Oracle / MS Access: ALTER TABLE Orders DROP CONSTRAINT fk_PerOrders SQL CHECK Constraint The CHECK constraint is used to limit the value range that can be placed in a column. If you define a CHECK constraint on a single column it allows only certain values for this column. If you define a CHECK constraint on a table it can limit the values in certain columns based on values in other columns in the row. SQL CHECK Constraint on CREATE TABLE The following SQL creates a CHECK constraint on the "P_Id" column when the "Persons" table is created. The CHECK constraint specifies that the column "P_Id" must only include integers greater than 0. My SQL: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), CHECK (P_Id>0) ) SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL CHECK (P_Id>0), LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255) ) To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255), CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes') ) SQL CHECK Constraint on ALTER TABLE To create a CHECK constraint on the "P_Id" column when the table is already created, use the following SQL: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD CHECK (P_Id>0) To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following SQL syntax: MySQL / SQL Server / Oracle / MS Access: ALTER TABLE Persons ADD CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes') To DROP a CHECK Constraint To drop a CHECK constraint, use the following SQL: SQL Server / Oracle / MS Access: ALTER TABLE Persons DROP CONSTRAINT chk_Person SQL DEFAULT Constraint The DEFAULT constraint is used to insert a default value into a column. The default value will be added to all new records, if no other value is specified. SQL DEFAULT Constraint on CREATE TABLE The following SQL creates a DEFAULT constraint on the "City" column when the "Persons" table is created: My SQL / SQL Server / Oracle / MS Access: CREATE TABLE Persons ( P_Id int NOT NULL, LastName varchar(255) NOT NULL, FirstName varchar(255), Address varchar(255), City varchar(255) DEFAULT 'Sandnes' ) The DEFAULT constraint can also be used to insert system values, by using functions like GETDATE(): CREATE TABLE Orders ( O_Id int NOT NULL, OrderNo int NOT NULL, P_Id int, OrderDate date DEFAULT GETDATE() ) SQL DEFAULT Constraint on ALTER TABLE To create a DEFAULT constraint on the "City" column when the table is already created, use the following SQL: MySQL: ALTER TABLE Persons ALTER City SET DEFAULT 'SANDNES' SQL Server / Oracle / MS Access: ALTER TABLE Persons ALTER COLUMN City SET DEFAULT 'SANDNES' To DROP a DEFAULT Constraint To drop a DEFAULT constraint, use the following SQL: MySQL: ALTER TABLE Persons ALTER City DROP DEFAULT SQL Server / Oracle / MS Access: ALTER TABLE Persons ALTER COLUMN City DROP DEFAULT SQL DROP INDEX, DROP TABLE, and DROP DATABASE Indexes, tables, and databases can easily be deleted/removed with the DROP statement. The DROP INDEX Statement The DROP INDEX statement is used to delete an index in a table. DROP INDEX Syntax for MS Access: DROP INDEX index_name ON table_name DROP INDEX Syntax for MS SQL Server: DROP INDEX table_name.index_name DROP INDEX Syntax for DB2/Oracle: DROP INDEX index_name DROP INDEX Syntax for MySQL: ALTER TABLE table_name DROP INDEX index_name The DROP TABLE Statement The DROP TABLE statement is used to delete a table. DROP TABLE table_name The DROP DATABASE Statement The DROP DATABASE statement is used to delete a database. DROP DATABASE database_name The TRUNCATE TABLE Statement What if we only want to delete the data inside the table, and not the table itself? Then, use the TRUNCATE TABLE statement: TRUNCATE TABLE table_name The ALTER TABLE Statement The ALTER TABLE statement is used to add, delete, or modify columns in an existing table. SQL ALTER TABLE Syntax To add a column in a table, use the following syntax: ALTER TABLE table_name ADD column_name datatype To delete a column in a table, use the following syntax (notice that some database systems don't allow deleting a column): ALTER TABLE table_name DROP COLUMN column_name To change the data type of a column in a table, use the following syntax: ALTER TABLE table_name ALTER COLUMN column_name datatype SQL ALTER TABLE Example Look at the "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to add a column named "DateOfBirth" in the "Persons" table. We use the following SQL statement: ALTER TABLE Persons ADD DateOfBirth date Notice that the new column, "DateOfBirth", is of type date and is going to hold a date. The data type specifies what type of data the column can hold. For a complete reference of all the data types available in MS Access, MySQL, and SQL Server, go to our complete Data Types reference. The "Persons" table will now like this: P_Id LastName FirstName Address City DateOfBirth 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Change Data Type Example Now we want to change the data type of the column named "DateOfBirth" in the "Persons" table. We use the following SQL statement: ALTER TABLE Persons ALTER COLUMN DateOfBirth year Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two-digit or four-digit format. DROP COLUMN Example Next, we want to delete the column named "DateOfBirth" in the "Persons" table. We use the following SQL statement: ALTER TABLE Persons DROP COLUMN DateOfBirth The "Persons" table will now like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger The CREATE INDEX statement is used to create indexes in tables. Indexes allow the database application to find data fast; without reading the whole table. Indexes An index can be created in a table to find data more quickly and efficiently. The users cannot see the indexes, they are just used to speed up searches/queries. Note: Updating a table with indexes takes more time than updating a table without (because the indexes also need an update). So you should only create indexes on columns (and tables) that will be frequently searched against. SQL CREATE INDEX Syntax Creates an index on a table. Duplicate values are allowed: CREATE INDEX index_name ON table_name (column_name) SQL CREATE UNIQUE INDEX Syntax Creates a unique index on a table. Duplicate values are not allowed: CREATE UNIQUE INDEX index_name ON table_name (column_name) Note: The syntax for creating indexes varies amongst different databases. Therefore: Check the syntax for creating indexes in your database. CREATE INDEX Example The SQL statement below creates an index named "PIndex" on the "LastName" column in the "Persons" table: CREATE INDEX PIndex ON Persons (LastName) If you want to create an index on a combination of columns, you can list the column names within the parentheses, separated by commas: CREATE INDEX PIndex ON Persons (LastName, FirstName) DML The INSERT INTO statement is used to insert new records in a table. The INSERT INTO Statement The INSERT INTO statement is used to insert a new row in a table. SQL INSERT INTO Syntax It is possible to write the INSERT INTO statement in two forms. The first form doesn't specify the column names where the data will be inserted, only their values: INSERT INTO table_name VALUES (value1, value2, value3,...) The second form specifies both the column names and the values to be inserted: INSERT INTO table_name (column1, column2, column3,...) VALUES (value1, value2, value3,...) SQL INSERT INTO Example We have the following "Persons" table: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger Now we want to insert a new row in the "Persons" table. We use the following SQL statement: INSERT INTO Persons VALUES (4,'Nilsen', 'Johan', 'Bakken 2', 'Stavanger') The "Persons" table will now look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger 4 Nilsen Johan Bakken 2 Stavanger Insert Data Only in Specified Columns It is also possible to only add data in specific columns. The following SQL statement will add a new row, but only add data in the "P_Id", "LastName" and the "FirstName" columns: INSERT INTO Persons (P_Id, LastName, FirstName) VALUES (5, 'Tjessem', 'Jakob') The "Persons" table will now look like this: P_Id LastName FirstName Address City 1 Hansen Ola Timoteivn 10 Sandnes 2 Svendson Tove Borgvn 23 Sandnes 3 Pettersen Kari Storgt 20 Stavanger 4 Nilsen Johan Bakken 2 Stavanger 5 Tjessem Jakob
本文档为【The SQL SELECT Statement - Member of EEPISSQL SELECT语句组成的eepis】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_044822
暂无简介~
格式:doc
大小:223KB
软件:Word
页数:90
分类:工学
上传时间:2017-10-25
浏览量:41