首页 时间序列分析-第四章 均值和自协方差函数的估计PPT课件

时间序列分析-第四章 均值和自协方差函数的估计PPT课件

举报
开通vip

时间序列分析-第四章 均值和自协方差函数的估计PPT课件第四章均值和自协方差函数的估计.本章结构均值的估计自协方差函数的估计白噪声检验.§4.1均值的估计相合性中心极限定理收敛速度的模拟计算.均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考虑相合性,渐进分布,收敛速度等问题。.均值估计公式设是平稳列的观测。的点估计为把观测样本看成随机样本时记作大写的.相合性设统计量是的估计,在统计学中有如下的定义1如果,则称是的无偏估...

时间序列分析-第四章 均值和自协方差函数的估计PPT课件
第四章均值和自协方差函数的估计.本章结构均值的估计自协方差函数的估计白噪声检验.§4.1均值的估计相合性中心极限定理收敛速度的模拟计算.均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考虑相合性,渐进分布,收敛速度等问题。.均值估计公式设是平稳列的观测。的点估计为把观测样本看成随机样本时记作大写的.相合性设统计量是的估计,在统计学中有如下的定义1如果,则称是的无偏估计。2如果当则称是的渐进无偏估计。3如果依概率收敛到,则称是的相合估计。4如果收敛到,则称是的强相合估计。.一般情况下,无偏估计比有偏估计来得好,对于由(1.1)定义的。有所以是均值的无偏估计。.均值估计的相合性好的估计量起码应是相合的。否则,估计量不收敛到要估计的参数,它无助于实际问题的解决。对于平稳序列,如果它的自协方差函数收敛到零,则:..利用切比雪夫不等式得到依概率收敛到。于是是的相合估计。.均值估计的性质定理1.1设平稳序列有均值和自协方差函数。则1是的无偏估计。2如果则是的相合估计。3如果还是严平稳遍历序列,则是的强相合估计。.第三条结论利用1.5的遍历定理5.1可得。一般地,任何强相合估计一定是相合估计。线性平稳列的均值估计是相合估计。ARMA模型的均值估计是相合估计。.独立同分布样本的中心极限定理若。则可以据此计算的置信区间。(1.3)其中的1.96也经常用2近似代替。.平稳列的均值估计的中心极限定理定理1.2设是独立同分布的,线性平稳序列由(1.5)定义。其中平方可和。如果的谱密度(1.6)在连续,并且则当时,.推论当绝对可和时,连续。推论1.3如果和成立,则当时并且(1.7).收敛速度相合的估计量渐进性质除了是否服从中心极限定理外,还包括这个估计量的收敛速度。收敛速度的描述方法之一是所谓的重对数律。重对数律成立时,得到的收敛速度的阶数一般是除了个别情况,这个阶数一般不能再被改进。.收敛速度(2)定理1.4设是独立同分布的。线性平稳序列由(1.5)定义。谱密度。当以下的条件之一成立时:1当以负指数阶收敛于0.2谱密度在连续。并且对某个成立。.则有重对数律(1.8)(1.9)易见重对数律满足时不收敛。.AR(2)的均值计算令考虑AR(2)模型为模拟方便设。.AR(2)的均值计算(2).估计收敛性的模拟为了观察时的收敛可以模拟L个值然后观察的变化。为了研究固定N情况下的精度以至于抽样分布。可以进行M次独立的随机模拟,得到M个的观察值。这种方法对于难以得到估计量的理论分布的情况是很有用的。.....§4.2自协方差函数的估计自协方差估计公式及正定性的相合性的渐进分布模拟计算.自协方差函数估计公式(2.2)样本自相关系数(ACF)估计为(2.3).自协方差函数估计公式估计一般不使用除了的估计形式:(2.4)因为:我们不对大的k值计算更重要的是只有除以N的估计式才是正定的。.样本自协方差的正定性只要观测不全相同则正定。令记(2.5)只要不全是零则A满秩。.样本自协方差的正定性事实上,设则A矩阵左面会出现一个以值开始非零的斜面。显然是满秩的。故不全相同时正定。作为的主子式也是正定的。.的相合性定理2.1设平稳序列的样本自协方差函数由式(2.2)或(2.4)定义。1如果当时,则对每个确定的k,是的渐进无偏估计:.2如果是严平稳遍历序列。则对每个确定的k,和分别是和的强相合估计:.定理2.1的证明下面只对由(2.2)定义的样本自协方差函数证明定理2.1。对由(2.4)定义的的证明是一样的。设则是零均值的平稳序列。利用(2.7).定理2.1的证明..定理2.1的证明..只考虑线性序列。设是4阶矩有限的独立同分布的实数列平方可和。线性平稳序列(2.8).有自协方差函数(2.9)有谱密度(2.10).设自协方差函数列平方可和。设为独立同分布的。令定义正态时间序列(2.11)(2.12).样本自协方差和自相关的中心极限定理定理2.2设是独立同分布的。满足。如果线性平稳序列(2.8)的谱密度(2.10)平方可积:.则对任何正整数h,当时,有以下结果1依分布收敛到2依分布收敛到.自相关检验的例子例2.1(接第三章例1.1)对MA(q)序列。利用定理2.2得到,只要当依分布收敛到的分布。注意时,中的应属于,所以令有.为期望为0,方差为的正态分布。在假设是MA(q)下,对m>q有.自相关检验的例子现在用表示第三章例1.1中差分后的化学浓度数据。在是MA(q)下。用代替真值后分别对计算出.在q=0的假设下,所以应当否定q=0..自相关检验的例子实际工作中人们还计算概率并且把p称为检验的p值。明显p值越小,数据提供的否定原假设的依据越充分。现在在下,近似服从 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 正态分布。所以p值几乎是零,因而必须拒绝是MA(0)的假设。取q=1时,所以不能拒绝是MA(1)的假设。.谱密度平方可积的充要条件对于实际工作者来讲谱密度平方可积的条件通常很难验证。于是希望能把定理2.2中谱密度平方可积的条件改加在自协方差函数的收敛速度上。定理2.3对于一平稳序列它的自协方差函数平方可积的充分必要条件是它的谱密度平方可积。.这个结论主要是利用实变函数论中Fourier级数的理论。只有证明时用了周期图(如P.67定理3.1的证明,那里绝对可和)。证明略。推论2.4设是独立同分布的白噪声满足如果线性平稳序列(2.8)的自协方差函数平方可和:则定理2.2中的结论成立。.快速收敛条件下的中心极限定理定理2.2要求白噪声的方差有4阶矩。下面关于线性平稳序列的样本自相关系数的中心极限定理不要求噪声项的4阶矩有限。定理2.5设是独立同分布的线性平稳序列由(2.8)定义。如果自协方差函数平方可和,并且对某个常数(2.13).则对任何正数h.当时,依分布收敛到ARMA序列的满足(2.13).ARMA序列的白噪声列是独立同分布序列时定理2.5结论成立。.独立同分布列的中心极限定理推论2.6如果是独立同分布的白噪声,是样本自相关系数,则对任何正整数h:1:依分布收敛到多元标准正态分布这里是的单位矩阵。.2:如果则依分布收敛到.推论2.6的证明对白噪声,定理2.5的条件满足。第二条满足推论2.4的条件。.AR(2)模型实例首先用图形表示N不同时的误差。然后重复M=1000次计算1000个的标准差(称为标准误差)。发现N增大时标准误差减小。误差随N减小的速度为。根离单位圆近的模型其估计标准误差大。.......§4.3白噪声检验白噪声的检验样本自相关置信区间检验法.白噪声的检验若是独立同分布的白噪声,根据推论2.6,N足够大时服从iid标准正态分布。于是近似服从分布。.AR(2)模拟数据的检验对于AR(2)模型取不同根离单位圆距离实验。根离单位圆越近与白噪声差别越大。对AR(1)模型用不同的b模拟。B接近于1时与白噪声差别明显。关于中项数m的选取:m=5比m=20有效。注意以ARMA模型为例,当k较大时已经很小,所以贡献不大,取太大的m容易使检验不敏感。.白噪声的检验法:是独立白噪声;是相关序列。下,拒绝域为其中...样本自相关置信区间检验法当为独立同分布白噪声时近似m维标准正态分布。如果超过5%的可否定为独立同分布白噪声。与检验理由类似,m不应取太大。.正态分布检验法:.例子对的检验可以比较成功。对MA(1)的检验如果取m=20则很可能不成功。因为一般只有超过界限。对AR的检验一般成功。因为其相关系数不截尾。演示....
本文档为【时间序列分析-第四章 均值和自协方差函数的估计PPT课件】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
机构认证用户
爱赢
公司经营范围:网络软件设计、制作、图文设计、影视制作(编辑)
格式:ppt
大小:687KB
软件:PowerPoint
页数:0
分类:成人教育
上传时间:2021-01-26
浏览量:11