首页 高等数学(同济第七版)(上册)-知识点

高等数学(同济第七版)(上册)-知识点

举报
开通vip

高等数学(同济第七版)(上册)-知识点 ... WORD 格式可编辑版 高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设 0)(lim,0)(lim  xgxf 且 l xg xf  )( )( lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ )(xg ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是...

高等数学(同济第七版)(上册)-知识点
... WORD 格式可编辑版 高等数学(同济第七版)上册- 知识点 高中化学知识点免费下载体育概论知识点下载名人传知识点免费下载线性代数知识点汇总下载高中化学知识点免费下载 总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设 0)(lim,0)(lim  xgxf 且 l xg xf  )( )( lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ )(xg ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x,tan x ~ x, xarcsin ~ x, xarccos ~ x, 1− cos x ~ 2/2^x , xe −1 ~ x , )1ln( x ~ x , 1)1(  x ~ x 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g(x) ≤ f (x) ≤ h(x) 若 AxhAxg  )(lim,)(lim ,则 Axf )(lim 2.两个重要公式 公式 1 1 sin lim 0   x x x 公式 2 ex x x   /1 0 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当 x 0 时,有以下公式,可当做等价无穷小更深层次 )( )!12( )1(... !5!3 sin )( ! ... !3!2 1 12 1253 32       n n n n n x xo n xxx xx xo n xxx xe ... WORD 格式可编辑版 )( !2 )1(... !4!2 1cos 2 242 n n n xo n xxx x  )()1(... 32 )1ln( 1 32 n n n xo n xxx xx   )( ! ))1()...(1( ... !2 )1( 1)1( 2 nn xox n n xxx        )( 12 )1(... 53 arctan 12 12 1 53       n n n xo n xxx xx 5.洛必达法则 定理 1 设函数 )(xf 、 )(xF 满足下列条件: (1) 0)(lim 0   xf xx , 0)(lim 0   xF xx ; (2) )(xf 与 )(xF 在 0x 的某一去心邻域内可导,且 0)(  xF ; (3) )( )( lim 0 xF xf xx    存在(或为无穷大),则 这个定理说明:当 )( )( lim 0 xF xf xx    存在时, )( )( lim 0 xF xf xx 也存在且等于 )( )( lim 0 xF xf xx    ;当 )( )( lim 0 xF xf xx    为无穷大时, )( )( lim 0 xF xf xx 也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值 的方法称为洛必达( HL ospital)法则.   型未定式 定理 2 设函数 )(xf 、 )(xF 满足下列条件: (1)   )(lim 0 xf xx ,   )(lim 0 xF xx ; (2) )(xf 与 )(xF 在 0x 的某一去心邻域内可导,且 0)(  xF ; (3) )( )( lim 0 xF xf xx    存在(或为无穷大),则 注:上述关于 0xx  时未定式   型的洛必达法则,对于 x 时未定式   型 同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“ 0 0 ”和“   ”型的未定式,其它的未定式须 先化简变形成“ 0 0 ”或“   ”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则; (3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不 能断定原极限不存在. 6.利用导数定义求极限 )( )( lim )( )( lim 00 xF xf xF xf xxxx     )( )( lim )( )( lim 00 xF xf xF xf xxxx     ... WORD 格式可编辑版 基本公式 )( )()( lim 0 '00 0 xf x xfxxf x     (如果存在) 7.利用定积分定义求极限 基本格式     1 01 )()( 1 lim dxxf n k f n n k n (如果存在) 三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点 设 0x 是函数 y = f (x)的间断点。如果 f (x)在间断点 0x 处的左、右极限都存在, 则称 0x 是 f (x)的第一类间断点。左右极限存在且相同但不等于该点的函数值为 可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳 跃间断点。 (2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无 穷间断点和振荡间断点。 四.闭区间上连续函数的性质 在闭区间[a,b]上连续的函数f (x),有以下几个基本性质。这些性质以后都 要用到。 定理1.(有界定理)如果函数f (x)在闭区间[a,b]上连续,则f (x)必在[a,b]上有 界。 定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b]上连续,则在这个 区间上一定存在最大值M 和最小值m 。 定理3.(介值定理)如果函数f (x)在闭区间[a,b]上连续,且其最大值和最小值 分别为M 和m ,则对于介于m和M 之间的任何实数c,在[a,b]上至少存在一个ξ , 使得f (ξ ) = c 推论:如果函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号,则在(a,b) 内至少存在一个点ξ ,使得f (ξ ) = 0这个推论也称为零点定理 ... WORD 格式可编辑版 第二章 导数与微分 一.基本概念 1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。 二.求导公式 三.常见求导 ... WORD 格式可编辑版 1.复合函数运算法则 2.由参数方程确定函数的运算法则 设x = (t),y = )(t 确定函数y = y(x),其中 )('),(' tt  存在,且 )(' t ≠ 0,则 )(' )(' t t dx dy    3.反函数求导法则 设y = f (x)的反函数x = g(y),两者皆可导,且f ′(x) ≠ 0 则 )0)('( ))((' 1 )(' 1 )('  xf ygfxf yg 4.隐函数运算法则 设y = y(x)是由方程F(x, y) = 0所确定,求y′的方法如下: 把F(x, y) = 0两边的各项对x求导,把y 看作中间变量,用复合函数求导公式计 算,然后再解出y′ 的表达式(允许出现y 变量) 5.对数求导法则 (指数类型 如 xxy sin ) 先两边取对数,然后再用隐函数求导方法得出导数y′。 对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数(注意 定义域。 关于幂指函数y = [f (x)]g (x) 常用的一种方法,y = )(ln)( xfxge 这样 就可以直接用复合函数运算法则进行。 6. 求n阶导数(n ≥ 2,正整数) 先求出 y′, y′′,„„ ,总结出规律性,然后写出y(n),最后用归纳法证明。 有一些常用的初等函数的n 阶导数公式 (1) xnx eyey  )(, (2) nxnx aayay )(ln, )(  (3) xy sin , ) 2 sin()( n xy n  (4) xy cos , ) 2 cos()( n xy n  (5) xy ln , nnn xny   )!1()1( 1)( ... WORD 格式可编辑版 第三章 微分中值定理与导数应用 一 .罗尔定理 设函数 f (x)满足 (1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3) f (a) = f (b) 则存在ξ ∈(a,b),使得 f ′(ξ ) = 0 二. 拉格朗日中值定理 设函数 f (x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导; 则存在ξ ∈(a,b),使得 )(' )()( f ab afbf    推论1.若f (x)在(a,b)内可导,且f ′(x) ≡ 0,则f (x)在(a,b)内为常数。 推论2.若f (x) ,g(x) 在(a,b) 内皆可导,且f ′(x) ≡ g′(x),则在(a,b)内f (x) = g(x)+ c,其中c为一个常数。 三 .柯西中值定理 设函数f (x)和g(x)满足:(1)在闭区间[a,b]上皆连续;(2)在开区间(a,b)内皆可 导;且g′(x) ≠ 0则存在ξ ∈(a,b)使得 )(' )(' )()( )()(   g f agbg afbf    )( ba  (注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g(x) = x 时,柯西 中值定理就是拉格朗日中值定理。) 四.泰勒公式(① 估值 ② 求极限(麦克劳林)) 定理 1.(皮亚诺余项的n 阶泰勒公式) 设f (x)在0 x 处有n 阶导数,则有公式 ,称为皮亚诺余项 定理2(拉格朗日余项的n 阶泰勒公式) 设f (x)在包含0 x 的区间(a,b)内有n +1阶导数,在[a,b]上有n阶连续导数,则对x ∈[a,b],有公式 , ,称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 0x =0 时,也称为n阶麦克劳林 ... WORD 格式可编辑版 公式。 常用公式(前8个) ... WORD 格式可编辑版 五.导数的应用 一.基本知识 设函数f (x)在 0x 处可导,且 0x 为f (x)的一个极值点,则 0)(' 0 xf 。 我们称x 满足 0)(' 0 xf 的 0x 称为 )(xf 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。 极值点判断方法 1. 第一充分条件 )(xf 在 0x 的邻域内可导,且 0)( 0  xf ,则①若当 0xx  时 , 0)(  xf ,当 0xx  时, 0)(  xf ,则 0x 为极大值点;②若当 0xx  时, 0)(  xf ,当 0xx  时, 0)(  xf ,则 0x 为极小值点;③若在 0x 的两侧 )(xf  不变号,则 0x 不是极值点. 2.第二充分条件 )(xf 在 0x 处二阶可导,且 0)( 0  xf , 0)( 0  xf ,则①若 0)( 0  xf , 则 0x 为极大值点;②若 0)( 0  xf ,则 0x 为极小值点. 3.泰勒公式判别法(用的比较少,可以自行百度) 二.凹凸性与拐点 1.凹凸的定义 设f (x)在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有 则称f (x)在I 上是凸(凹)的。 在几何上,曲线y = f (x)上任意两点的割线在曲线下(上)面,则y = f (x) 是凸(凹)的。如果曲线y = f (x)有切线的话,每一点的切线都在曲线之上(下) 则y = f (x)是凸(凹)的。 2.拐点的定义 曲线上凹与凸的分界点,称为曲线的拐点。 3.凹凸性的判别和拐点的求法 设函数f (x)在(a,b)内具有二阶导数 )('' xf , 如果在(a,b)内的每一点x,恒有 )('' xf > 0,则曲线y = f (x)在(a,b)内是凹的; ... WORD 格式可编辑版 如果在(a,b)内的每一点x,恒有 )('' xf < 0,则曲线y = f (x)在(a,b)内是凸的。 求曲线y = f (x)的拐点的方法步骤是: 第一步:求出二阶导数 )('' xf ; 第二步:求出使二阶导数等于零或二阶导数不存在的点 kxxx ,...2,1 ; 第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该 点就是拐点的横坐标; 第四步:求出拐点的纵坐标。 三.渐近线的求法 四.曲率 ... WORD 格式可编辑版 第四章 不定积分 一.基本积分表:                    Caxx ax dx Cshxchxdx Cchxshxdx C a a dxa Cxctgxdxx Cxdxtgxx Cctgxxdx x dx Ctgxxdx x dx x x )ln( ln csccsc secsec csc sin sec cos 22 22 2 2 2 2 C a x xa dx C xa xa axa dx C ax ax aax dx C a x arctg axa dx Cctgxxxdx Ctgxxxdx Cxctgxdx Cxtgxdx                           arcsin ln 2 1 ln 2 1 1 csclncsc seclnsec sinln cosln 22 22 22 22           C a xa xa x dxxa Caxx a ax x dxax Caxx a ax x dxax I n n xdxxdxI n nn n arcsin 22 ln 22 )ln( 22 1 cossin 2 2222 22 2 2222 22 2 2222 2 2 0 2 0  ... WORD 格式可编辑版 二.换元积分法和分部积分法 换元积分法 (1)第一类换元法(凑微分):   )()(d)()]([ xuduufxxxf    (2)第二类换元法(变量代换):   )(1 d)()]([)( xt tttfdxxf     分部积分法   vduuvudv 使用分部积分法时被积函数中谁看作 )(xu 谁看作 )(' xv 有一定规律。 记住口诀,反对幂指三为 )(xu ,靠前就为 )(xu ,例如 xdxex arcsin ,应该是 xarcsin 为 )(xu ,因为反三角函数排在指数函数之前,同理可以推出其他。 三.有理函数积分 有理函数: )( )( )( xQ xP xf  ,其中 )()( xQxP 和 是多项式。 简单有理函数: ⑴ 2 1 )( )(, 1 )( )( x xP xf x xP xf     ⑵ ))(( )( )( bxax xP xf   ⑶ bax xP xf   2 )( )( )( 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等). ... WORD 格式可编辑版 第五章 定积分 一.概念与性质 1、 定义:     n i ii b a xfdxxf 1 0 )(lim)(   2、 性质:(10条) ( 3 ) ... WORD 格式可编辑版 3.基本定理 变 上 限 积 分 : 设  x a dttfx )()( , 则 )()( xfx  推 广 : )()]([)()]([)( )( )( xxfxxfdttf dx d x x     N—L公式:若 )(xF 为 )(xf 的一个原函数,则 )()()( aFbFdxxf b a  4.定积分的换元积分法和分部积分法 ... WORD 格式可编辑版 二.定积分的特殊性质 ... WORD 格式可编辑版 第六章 定积分的应用 一. 平面图形的面积 1.直角坐标:   b a dxxfxfA )]()([ 12 2.极坐标:      dA )]()([ 2 1 2 1 2 2 二. 体积 1.旋转体体积: a)曲边梯形 xbxaxxfy ,,),(  轴,绕 x 轴旋转而成的旋转 体的体积:  b a x dxxfV )( 2 b)曲边梯形 xbxaxxfy ,,),(  轴,绕 y 轴旋转而成的旋转 ... WORD 格式可编辑版 体的体积:  b a y dxxxfV )(2 (柱壳法) 三.弧长 1.直角坐标:    b a dxxfs 2 )(1 2.参数方程:         dttts 22 )()( 极坐标:         ds 22 )()( ... WORD 格式可编辑版 第七章 微分方程 一. 概念 1.微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微 分方程中所出现的未知函数的最高阶导数的阶数. 2.解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常 数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解. (1).变量可分离的方程 dxxfdyyg )()(  ,两边积分   dxxfdyyg )()( (2).齐次型方程 )( x y dx dy  ,设 x y u  ,则 dx du xu dx dy  ; 或 )( y x dy dx  ,设 y x v  ,则 dy dv yv dy dx  (3).一阶线性微分方程 )()( xQyxP dx dy  用常数变易法或用公式:        CdxexQey dxxPdxxP )()( )( (4).可降阶的高阶微分方程 1、 )( )( xfy n  ,两边积分n次; 2、 ),( yxfy  (不显含有 y ),令 py  ,则 py  ; 3、 ),( yyfy  (不显含有 x ),令 py  ,则 dy dp py  (一) 线性微分方程解的结构 1、 21, yy 是齐次线性方程的解,则 2211 yCyC  也是; 2、 21, yy 是齐次线性方程的线性无关的特解,则 2211 yCyC  是方程的 通解; 3、 * 2211 yyCyCy  为非齐次方程的通解,其中 21, yy 为对应齐 ... WORD 格式可编辑版 次方程的线性无关的解, *y 非齐次方程的特解. (二) 常系数齐次线性微分方程 二阶常系数齐次线性方程: 0 qyypy 特征方程: 0 2  qprr ,特征根: 21, rr 特征根 通 解 实根 xrxr eCeCy 21 21  221 p rr  xr exCCy 1)( 21   ir , 21 )sincos( 21 xCxCey x   (三) 常系数非齐次线性微分方程 )(xfqyypy  1、 )()( xPexf m x 设特解 )( * xQexy m xk  ,其中         是重根 是一个单根 不是特征根 , λ , λ , λ k 2 1 0 2、  xxPxxPexf nl x  sin)(cos)()(  设特解  xxRxxRexy mmxk  sin)(cos)( )2()1(*  , 其中 } ,max{ nlm  ,        是特征根 不是特征根 i i k   ,1 ,0 工程部维修工的岗位职责 1、 严格遵守公司员工守则和各项规章 制度 关于办公室下班关闭电源制度矿山事故隐患举报和奖励制度制度下载人事管理制度doc盘点制度下载 ,服从领班安排,除完成日常维修任务外,有 计划 项目进度计划表范例计划下载计划下载计划下载课程教学计划下载 地承担其它工作任务; 2、 努力学习技术,熟练掌握现有电气设备的 原理及实际操作不维修; 3、 积极协调配电工的工作,出现事故时无条件地迅速返回机房,听从领班的指挥; 4、 招待执行所管辖设备的检修计划,按时按质按量地完成,并填好 记录 混凝土 养护记录下载土方回填监理旁站记录免费下载集备记录下载集备记录下载集备记录下载 表格; 5、 严格执行设备 管理制度 档案管理制度下载食品安全管理制度下载三类维修管理制度下载财务管理制度免费下载安全设施管理制度下载 ,做好日夜班的交接班工作; 6、 交班时发生故障,上一班必须协同下一班排队故障后才能下班,配电设备发生事故时丌得离岗; 7、 请假、补休需在一天前报告领班, 并由领班安排合适的替班人.
本文档为【高等数学(同济第七版)(上册)-知识点】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_841159
暂无简介~
格式:pdf
大小:1MB
软件:PDF阅读器
页数:18
分类:工学
上传时间:2019-11-27
浏览量:678