首页 高中数学竞赛解题策略-几何分册第32章勃罗卡定理

高中数学竞赛解题策略-几何分册第32章勃罗卡定理

举报
开通vip

高中数学竞赛解题策略-几何分册第32章勃罗卡定理第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 图321F O L G N E D C B A 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC E...

高中数学竞赛解题策略-几何分册第32章勃罗卡定理
第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 图321F O L G N E D C B A 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ?=?=-. 22EG GN BG GD R OG ?=?=-. 以上两式相减得() 22222EG OE R R OG =---, 即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-. 又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠, 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 90(180)90BCD BCD =?-?-∠=∠-? 11180909022BOD BOD BOD ??=?-∠-?=?-∠=∠ ??? , 即知点M 在OBD △的外接圆上. 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即O M E F ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与 OM '重合,即M 与M '重合. 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心. 事实上,由定理的证法2即得,或者由极点 公式 小学单位换算公式大全免费下载公式下载行测公式大全下载excel公式下载逻辑回归公式下载 :22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例. 例1(2001年北方数学邀请赛 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 )设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心. 事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 图322 F 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 由勃罗卡定理知,OP EF ⊥于点G . 延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠. 故AGB CGD ∠=∠. 例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M . 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆. 图32 3 证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥. 由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM =.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ??= 及 1MC DE AP CD EA PM ??=. 由①,②得 NB MC BD CD = . 再应用分比定理,有 ND MD BD DC = , 从而DMN DCB △∽△. 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆. 例4(1997年CMO 试题 中考模拟试题doc幼小衔接 数学试题 下载云南高中历年会考数学试题下载N4真题下载党史题库下载 )设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线. 证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥. A 图324 设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆. 又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上. 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P . 故P ,E ,F 三点共线. 例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM . 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB '' 的直径,点M 为BCB C '' 的圆心. H B'Q C E M N B C ' P 图325 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥. 设直线M H 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC 与AC HB '' 的另一个交点,亦即AP 为ABC 与AC HB '' 的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP H M ⊥. 下证点P 在ADE △的外接圆上. 延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有 BD CE BH CH = . 由BPN CPN S S =△△,有BP BN NC CP ?=?, 并注意BN CN =,NC BH =, 于是由*,有BD BH NC BP CE CH BN CP === , 即 BD CE BP CP = . 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 下面看定理的演变及应用 将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥. 图326 S D F R C G O M B E N 证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G . 注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-?. 同理,22FG FS SG GN =-?. 由上述两式相减,得 2222EG FG EM FS MG GR SG GN -=--?+?. 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ?=?. 于是,2222EG FG EO FO -=-. 由定差幂线定理,知OG EF ⊥. 由此例及勃罗卡定理,则可简捷处理如下问题: 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形). 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线. 图327 A D F C O I G B E 当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,联结EF . 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 故O ,I ,G 三点共线. 将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有 例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠. 温馨推荐 您可前往百度文库小程序 享受更优阅读体验 不去了 立即体验 图328 D O P C B 事实上,可类似于前面例2的证法即证得结论成立. 将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 图329 A E C N M D B F O H 求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. 证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1 180902 OBC BOC BAC ∠= ?-∠=?-∠, 即90OBD BDF ∠=?-∠,故OB DF ⊥. 同理,OC DE ⊥. (2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可. 注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤ 由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-. 故OH MN ⊥. 将例9中的外心O 演变为一般的点,则有 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 图3210 E C N D H O Q F B M P 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有 2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-, AH BC ⊥,有2222AB AC HB HC -=-. 从而得222222HM HN CM BN BH CH -=-+-.② 由①,②得2222OM ON HM HN -=-.故OH MN ⊥.
本文档为【高中数学竞赛解题策略-几何分册第32章勃罗卡定理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_421808
暂无简介~
格式:doc
大小:33KB
软件:Word
页数:0
分类:高中数学
上传时间:2019-08-20
浏览量:131