首页 排列组合综合讲义

排列组合综合讲义

举报
开通vip

排列组合综合讲义《排列组合综合讲义》目录1.加法原理 42.乘法原理 53.基本计数原理的综合应用 64.排列数组合数的简单计算 95.排队问题 116.数字问题 147.分堆问题 168.间接法(直接求解类别比较大时) 25一.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,……,在第类办法中有种不同的方法.那么完成这件事共有种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方...

排列组合综合讲义
《排列组合综合讲义》目录1.加法原理 42.乘法原理 53.基本计数原理的综合应用 64.排列数组合数的简单计算 95.排队问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 116.数字问题 147.分堆问题 168.间接法(直接求解类别比较大时) 25一.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,在第二类办法中有种方法,……,在第类办法中有种不同的方法.那么完成这件事共有种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,……,做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2.排列与组合⑴排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(其中被取的对象叫做元素)排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示.排列数公式:,,并且.全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列.的阶乘:正整数由到的连乘积,叫作的阶乘,用表示.规定:.⑵组合:一般地,从个不同元素中,任意取出个元素并成一组,叫做从个元素中任取个元素的一个组合.组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示.组合数公式:,,并且.组合数的两个性质:性质1:;性质2:.(规定)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法:元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:个相同元素,分成组,每组至少一个的分组问题——把个元素排成一排,从个空中选个空,各插一个隔板,有.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成堆(组),必须除以!,如果有堆(组)元素个数相等,必须除以!8.错位法:编号为1至的个小球放入编号为1到的个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.二经典题组1.加法原理【例1】高二年级一班有女生人,男生人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种.【例2】若、是正整数,且,则以为坐标的点共有多少个?【例3】用到这个数字,可以组成没有重复数字的三位偶数的个数为()A. B. C. D.【例4】用数字组成的无重复数字的四位偶数的个数为()A. B. C. D.【例5】用这个数字,可以组成____个大于,小于的数字不重复的四位数.2.乘法原理【例6】公园有个门,从一个门进,一个门出,共有_____种不同的走法.【例7】将个不同的小球放入个盒子中,则不同放法种数有_______.【例8】如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有种.【例9】高二年级一班有女生人,男生人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【例10】六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【例11】六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种?【例12】用,,,,,组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且和相邻,这样的六位数的个数是__________(用数字作答).【例13】从集合中任选两个元素作为椭圆方程中的和,则能组成落在矩形区域且内的椭圆个数为(  )A. B. C. D.【例14】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为,值域为的“同族函数”共有()A.个 B.个 C.个 D.个【例15】某银行储蓄卡的密码是一个位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如)的方法设计密码,当积为一位数时,十位上数字选,并且千位、百位上都能取.这样设计出来的密码共有()A.个 B.个C.个 D.个【例16】从集合中,选出个数组成子集,使得这个数中的任何两个数之和不等于,则取出这样的子集的个数为()A.B.C.D.【例17】若、是整数,且,,则以为坐标的不同的点共有多少个?【例18】用,,,,,这个数字:⑴可以组成______________个数字不重复的三位数.⑵可以组成______________个数字允许重复的三位数.【例19】六名同学报名参加三项体育比赛,共有多少种不同的报名结果?【例20】将名教师分配到所中学任教,每所中学至少一名教师,则不同的分配 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 共有()种.A. B. C. D.3.基本计数原理的综合应用【例21】用,,,,排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答)【例22】若自然数使得作竖式加法均不产生进位现象.则称为“可连数”.例如:是“可连数”,因不产生进位现象;不是“可连数”,因产生进位现象.那么,小于的“可连数”的个数为()A. B. C. D.【例23】由正方体的8个顶点可确定多少个不同的平面?【例24】如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.(以数字作答)【例25】如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【例26】某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种.(以数字作答)【例27】分母是385的最简真分数一共有多少个?并求它们的和.【例28】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答)【例29】用,,,,,这个数字,可以组成_______个大于,小于的数字不重复的四位数.【例30】某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“”到“”共个号码.公司规定:凡卡号的后四位带有数字“”或“”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为(  )A. B. C. D.【例31】同室人各写张贺年卡,先集中起来,然后每人从中各拿张别人送出的贺年卡,则张贺年卡不同的分配方式有( )A.    B.种     C.种    D.种【例32】某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A. B. C. D.【例33】某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共()A.15种 B.12种 C.9种 D.6种【例34】如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为(用数字作答).【例35】用到这个数字,可以组成没有重复数字的三位偶数的个数为()A. B. C. D.【例36】用红、黄、蓝三种颜色之一去涂图中标号为的个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且“、、”号数字涂相同的颜色,则符合条件的所有涂法共有()种.A.B.C.D.【例37】足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.种B.种C.种D.种B.4.排列数组合数的简单计算【例38】对于满足的正整数,()A.B.C.D.【例39】计算______.【例40】计算,;【例41】计算______,_______.【例42】计算,;【例43】计算,,,,.【例44】已知,求的值.【例45】解不等式【例46】证明:.【例47】解方程.【例48】解不等式.【例49】解方程:【例50】解不等式:.【例51】设表示不超过的最大整数(如,),对于给定的,定义,,则当时,函数的值域是()A. B.C. D.【例52】组合数恒等于()A.B.C.D.【例53】已知,求、的值.排列数组合数公式的应用【例54】已知,求的值.【例55】若,则_______【例56】若,则 【例57】证明:【例58】证明:.【例59】求证:.【例60】证明:.【例61】证明:.【例62】求证:;【例63】计算:,【例64】证明:.(其中)【例65】解方程【例66】确定函数的单调区间.【例67】规定,其中,为正整数,且,这是排列数(是正整数,且)的一种推广.⑴求的值;⑵排列数的两个性质:①,②(其中是正整数).是否都能推广到(,是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由.5.排队问题【例68】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例69】个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑵其中甲、乙两人不相邻有多少种不同的排法?⑶其中甲、乙两人不站排头和排尾有多少种不同的排法?⑷其中甲不站排头,且乙不站排尾有多少种不同的排法?【例70】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例71】个队员排成一排,⑴共有多少种不同的排法?⑵若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例72】五个字母排成一排,若的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法(用数字作答).【例73】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有___个(用数字作答).【例74】记者要为名志愿者和他们帮助的位老人拍照,要求排成一排,位老人相邻但不排在两端,不同的排法共有( )A.种 B.种 C.种 D.种【例75】名同学合影,站成前排人后排人,现摄影师要从后排人中抽人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.【例76】记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种【例77】在数字与符号五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()A. B. C. D.【例78】计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例79】6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例80】一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例81】位男生和位女生共位同学站成一排,若男生甲不站两端,位女生中有且只有两位女生相邻,则不同排法的种数是()A. B. C. D.【例82】古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有种(结果用数值表示).【例83】在的任一排列中,使相邻两数都互质的排列方式共有()种.A.B.C.D.【例84】从集合与中各任取2个元素排成一排(字母和数字均不能重复).每排中字母和数字至多只能出现一个的不同排法种数是_________.(用数字作答)【例85】从集合与中各任取个元素排成一排(字母和数字均不能重复).每排中字母和数字至多只能出现一个的不同排法种数是_________.(用数字作答)【例86】个人坐在一排个座位上,问⑴空位不相邻的坐法有多少种?⑵个空位只有个相邻的坐法有多少种?⑶个空位至多有个相邻的坐法有多少种?【例87】位男生和位女生共位同学站成一排,若男生甲不站两端,位女生中有且只有两位女生相邻,则不同排法的种数是()A. B. C. D.【例88】12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有()A.B.C.D.【例89】两部不同的长篇小说各由第一、二、三、四卷组成,每卷本,共本.将它们任意地排成一排,左边本恰好都属于同一部小说的概率是_______.【例90】年月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对列电煤货运列车进行编组调度,决定将这列列车编成两组,每组列,且甲与乙两列列车不在同一小组.如果甲所在小组列列车先开出,那么这列列车先后不同的发车顺序共有()A.种B.种C.种D.种6.数字问题【例91】给定数字、、、、、,每个数字最多用一次,⑴可能组成多少个四位数?⑵可能组成多少个四位奇数?⑶可能组成多少个四位偶数?⑷可能组成多少个自然数?【例92】用0到9这10个数字,可组成多少个没有重复数字的四位偶数?【例93】在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例94】用排成一个数字不重复的五位数,满足的五位数有多少个?【例95】用这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是,则这样的四位数共有多少个?【例96】用数字组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例97】有张分别标有数字的红色卡片和张分别标有数字的蓝色卡片,从这张卡片中取出张卡片排成一行.如果取出的张卡片所标数字之和等于,则不同的排法数一共有种.;【例98】有张卡片分别标有数字,,,,,,,,从中取出张卡片排成行列,要求行中仅有中间行的两张卡片上的数字之和为,则不同的排法共有()A.种 B.种 C.种 D.种【例99】有张分别标有数字的红色卡片和张分别标有数字的蓝色卡片,从这张卡片中取出张卡片排成一行.如果取出的张卡片所标数字之和等于,则不同的排法共有____种(用数字作答).【例100】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例101】用数字可以组成没有重复数字,并且比大的五位偶数共有()A.个B.个C.个D.个【例102】从这个数中,取出两个,使其和为偶数,则共可得到个这样的不同偶数?【例103】求无重复数字的六位数中,能被整除的数有______个.【例104】用数字组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例105】从这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.B.C.D.【例106】从这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.B.C.D.【例107】从到的九个数字中取三个偶数四个奇数,试问:(1)、能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑵、上述七位数中三个偶数排在一起的有几个?(3)、⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?⑷、⑴其中任意两偶数都不相邻的七位数有几个?【例108】用到这九个数字.可组成多少个没有重复数字的四位偶数?【例109】有张分别标有数字的红色卡片和张分别标有数字的蓝色卡片,从这张卡片中取出张卡片排成一行.如果取出的张卡片所标数字之和等于,则不同的排法共有______种(用数字作答).【例110】在由数字组成的所有没有重复数字的位数中,大于且小于的数共有()个A.个     B.个    C.个   D.个【例111】由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列,则_____.A. B. C. D.【例112】从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程,其中有实数根的有几个?【例113】从中任选三个不同元素作为二次函数的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?7.分堆问题【例114】本不同的书,按照以下要求处理,各有几种分法?⑴一堆一本,一堆两本,一堆三本;⑵甲得一本,乙得两本,丙得三本;⑶一人得一本,一人得二本,一人得三本;⑷平均分给甲、乙、丙三人;⑸平均分成三堆.【例115】有6本不同的书⑴甲、乙、丙3人每人2本,有多少种不同的分法?⑵分成3堆,每堆2本,有多少种不同的分堆方法?⑶分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?⑷分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少不同的分配方法?⑸分给甲1本、乙1本、丙4本,有多少种不同的分配方法?⑹分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法?⑺摆在3层书架上,每层2本,有多少种不同的摆法?【例116】七个人参加义务劳动,按下列方法分组有多少种不同的分法?⑴选出5个人再分成两组,一组2人,另一组3人;⑵选出6个人,分成两组,每组都是3人;⑶选出2人一组、3人一组,轮流挖土、运土.【例117】将名大学生分配到个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).【例118】把一同排6张座位编号为的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ()A. B. C.D.【例119】现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员,问车辆、司机、售票员搭配方案一共有多少种?【例120】3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有()A.90种 B.180种 C.270种 D.540种【例121】将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540B.300C.180D.150【例122】某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)染色问题【例123】如图,正五边形中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法有()A.30种 B.27种 C.24种 D.21种【例124】将填入的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有____________.【例125】将填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有()A.种 B.种 C.种 D.种【例126】用红、黄、蓝、绿四种颜色给图中的、、、四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为().A.B.C.D.【例127】将个和个共个字母填在如图所示的个小方格内,每个小方格内至多填个字母,若使相同字母既不同行也不同列,则不同的填法共有__________种(用数字作答).【例128】如图所示、、、、为个区域,现备有种颜色为个区域涂色,涂色要求:每相邻两个区域不同色,每个区域只涂一色,共有多少种不同的涂色方法?【例129】如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答).【例130】如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).错位排列【例131】编号为的五人入座编号也为的五个座位,至多有人对号的坐法有______种.【例132】7个人到7个地方去旅游,甲不去A地,乙不去B地,问:共有多少种旅游方案?【例133】7个人到7个地方去旅游,甲不去A地,乙不去B地,丙不去C地,问:共有多少种旅游方案?【例134】7个人到7个地方去旅游,甲不去A地,乙不去B地,丙不去C地,丁不去D地,问:共有多少种旅游方案?直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例135】从名外语系大学生中选派名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有人参加,交通和礼仪各有人参加,则不同的选派方法共有.【例136】北京《财富》全球论坛期间,某高校有名志愿者参加接待工作.若每天排早、中、晚三班,每班人,每人每天最多值一班,则开幕式当天不同的排班种数为A.B.C.D.【例137】在平面直角坐标系中,轴正半轴上有个点,轴正半轴有个点,将轴上这个点和轴上这个点连成条线段,这条线段在第一象限内的交点最多有()A.个B.个C.个D.个【例138】一个口袋内有个不同的红球,个不同的白球,⑴从中任取个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?【例139】一个口袋内装有大小相同的个白球和个黑球.⑴从口袋内取出个球,共有多少种取法?⑵从口袋内取出个球,使其中含有个黑球,有多少种取法?⑶从口袋内取出个球,使其中不含黑球,有多少种取法?【例140】有名划船运动员,其中人只会划左舷,人只会划右舷,其余人既会划左舷也会划右舷.从这名运动员中选出人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例141】若,则,就称是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为()A.B.C.D.【例142】从名女生,名男生中,按性别采用分层抽样的方法抽取名学生组成课外小组,则不同的抽取方法种数为______.A. B. C. D.【例143】某城市街道呈棋盘形,南北向大街条,东西向大街条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例144】某幢楼从二楼到三楼的楼梯共级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用步走完,则上楼梯的方法有______种.【例145】亚、欧乒乓球对抗赛,各队均有名队员,按事先排好的顺序参加擂台赛,双方先由号队员比赛,负者淘汰,胜者再与负方号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例146】设含有个元素的集合的全部子集数为,其中由个元素组成的子集数为,则的值为()A.B.C.D.【例147】设坐标平面内有一个质点从原点出发,沿轴跳动,每次向正方向或负方向跳动一个单位,经过次跳动质点落在点(允许重复过此点)处,则质点不同的运动方法种数为     .【例148】从名男同学,名女同学中选名参加体能测试,则选到的名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)【例149】在的边上有四点,边上有共个点,连结线段,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:()A.B.C.D.【例150】从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴、必须当选;⑵、都不当选;⑶、不全当选;⑷至少有2名女生当选;⑸选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.【例151】甲组有名男同学,名女同学;乙组有名男同学、名女同学.若从甲、乙两组中各选出名同学,则选出的人中恰有名女同学的不同选法共有()A.种 B.种 C.种 D.种【例152】从名大学毕业生中选人担任村长助理,则甲、乙至少有人入选,而丙没有入选的不同选法的种数为()A.B.C. D.【例153】某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A. B. C. D.【例154】要从个人中选出个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例155】有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例156】某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有()A.288种 B.72种 C.42种 D.36种【例157】某班有名男生,名女生,现要从中选出人组成一个宣传小组,其中男、女学生均不少于人的选法为()A.B.C.D.【例158】用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个⑴数字1不排在个位和千位⑵数字1不在个位,数字6不在千位.【例159】甲、乙、丙、丁、戊名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”.从这个回答分析,人的名次排列共有_______(用数字作答)种不同情况.【例160】某高校外语系有名奥运会志愿者,其中有名男生,名女生,现从中选人参加某项“好运北京”测试赛的翻译工作,若要求这人中既有男生,又有女生,则不同的选法共有()A.种 B.种 C.种 D.种【例161】用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为()A. B. C. D.【例162】某电视台连续播放个不同的广告,其中有个不同的商业广告和个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A.种B.种C.种D.种【例163】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有_____种(用数字作答).【例164】从名男生和名女生中选出人,分别从事三项不同的工作,若这人中至少有名女生,则选派方案共有()A.种 B.种 C.种 D.种【例165】甲组有名男同学,名女同学;乙组有名男同学、名女同学.若从甲、乙两组中各选出名同学,则选出的人中恰有名女同学的不同选法共有()A.种 B.种 C.种 D.种【例166】将名大学生分配到个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).【例167】用数字可以组成没有重复数字,并且比大的五位偶数共有()A.个B.个C.个D.个【例168】一生产过程有道工序,每道工序需要安排一人照看.现从甲、乙、丙等名工人中安排人分别照看一道工序,第一道工序只能从甲、乙两工人中安排人,第四道工序只能从甲、丙两工人中安排人,则不同的安排方案共有()A.种 B.种 C.种 D.种【例169】2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为()A.36B.42C.48 D.60【例170】从名女生,名男生中,按性别采用分层抽样的方法抽取名学生组成课外小组,则不同的抽取方法种数为______.A. B. C. D.【例171】名志愿者中安排人在周六、周日两天参加社区公益活动.若每天安排人,则不同的安排方案共有种(用数字作答).【例172】给定集合,映射满足:①当时,;②任取,若,则有.则称映射:是一个“优映射”.例如:用表1表示的映射:是一个“优映射”.表1 1 2 3 2 3 1表2 1 2 3 4 3 ⑴已知表2表示的映射:是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);⑵若映射:是“优映射”,且方程的解恰有6个,则这样的“优映射”的个数是_____. 【例173】将个不同的小球全部放入编号为和的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有__________种.【例174】将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有(  )A.10种   B.20种   C.36种   D.52种【例175】一个口袋内有个不同的红球,个不同的白球,⑴从中任取个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?【例176】正整数称为凹数,如果,且,其中,请回答三位凹数共有个(用数字作答).【例177】年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.种 B.种 C.种 D.种【例178】某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【例179】某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?【例180】从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有()A.种B.种C.种D.【例181】12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.种B.3种C.种D.种【例182】袋中装有分别编号为的个白球和个黑球,从中取出个球,则取出球的编号互不相同的取法有()A.种B.种C.种D.种.【例183】现有男、女学生共人,从男生中选人,从女生中选人分别参加数学、物理、化学三科竞赛,共有种不同方案,那么男、女生人数分别是()A.男生人,女生人B.男生人,女生人C.男生人,女生人D.男生人,女生人.【例184】将个小球任意放入个不同的盒子中,⑴若个小球各不相同,共有多少种放法?⑵若要求每个盒子都不空,且个小球完全相同,共有多少种不同的放法?⑶若要求每个盒子都不空,且个小球互不相同,共有多少种不同的放法?【例185】将个小球任意放入个不同的盒子中,每个盒子都不空,⑴若个小球完全相同,共有多少种不同的放法?⑵若个小球互不相同,共有多少种不同的放法?【例186】四个不同的小球,每球放入编号为、、、的四个盒子中.⑴随便放(可以有空盒,但球必须都放入盒中)有多少种放法?⑵四个盒都不空的放法有多少种?⑶恰有一个空盒的放法有多少种?⑷恰有两个空盒的放法有多少种?⑸甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例187】设坐标平面内有一个质点从原点出发,沿轴跳动,每次向正方向或负方向跳个单位,若经过次跳动质点落在点处(允许重复过此点),则质点不同的运动方法共___________种;若经过次跳动质点落在点处(允许重复过此点),其中,且为偶数,则质点不同的运动方法共有_______种.【例188】设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【例189】是集合到集合的映射,是集合到集合的映射,则不同的映射的个数是多少?有多少?满足的映射有多少?满足的映射对有多少?【例190】排球单循坏赛,胜者得分,负者分,南方球队比北方球队多支,南方球队总得分是北方球队的倍,设北方的球队数为.⑴试求北方球队的总得分以及北方球队之间比赛的总得分;⑵证明:或;⑶证明:冠军是一支南方球队.【例191】已知集合,函数的定义域、值域都是,且对于任意.设是的任意的一个排列,定义数表,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为()A. B. C. D.8.间接法(直接求解类别比较大时)【例192】有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【例193】从中取一个数字,从中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是()A.B.C.D. 【例194】以三棱柱的顶点为顶点共可组成个不同的三棱锥.【例195】设集合,集合是的子集,且满足,,那么满足条件的子集的个数为()A.B.C.D.【例196】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A. B. C. D.【例197】某高校外语系有名奥运会志愿者,其中有名男生,名女生,现从中选人参加某项“好运北京”测试赛的翻译工作,若要求这人中既有男生,又有女生,则不同的选法共有()A.种 B.种 C.种 D.种【例198】对于各数互不相等的正数数组(是不小于的正整数),如果在时有,则称“与”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组中有顺序“”,“”,其“顺序数”等于.若各数互不相等的正数数组的“顺序数”是,则的“顺序数”是_________.【例199】已知集合,,,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.B.C.D.【例200】甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).【例201】设有编号为,,,,的五个球和编号为,,,,的五个盒子,现将这五个球放入个盒子内,⑴只有一个盒子空着,共有多少种投放方法?⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【例202】在排成的方阵的个点中,中心个点在某一个圆内,其余个点在圆外,在个点中任选个点构成三角形,其中至少有一顶点在圆内的三角形共有()A.个B.个C.个D.个【例203】从甲、乙等名同学中挑选名参加某项公益活动,要求甲、乙中至少有人参加,则不同的挑选方法共有()A.种 B.种 C.种 D.种【例204】若关于的方程组有解,且所有解都是整数,则有序数对的数目为()A.B.C. D.【例205】从名男医生、名女医生中选名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.种 B.种 C.种 D.种【例206】甲、乙两人从门课程中各选修门,则甲、乙所选的课程中至少有门不相同的选法共有()A.种 B.种 C.种 D.种【例207】,则含有五个元素,且其中至少有两个偶数的的子集个数为_____.【例208】在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的数共有_______个.【例209】在的边上取个点,在边上取个点(均除点外),连同点共个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?【例210】共个人,从中选名组长名副组长,但不能当副组长,不同的选法总数是()A.B.C.D.【例211】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A. B. C. D.【例212】三行三列共九个点,以这些点为顶点可组成____个三角形.【例213】从名奥运志愿者中选出名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.种 B.种C.种  D.种【例214】某校从名教师中选派名教师同时去个边远地区支教(每地人),其中甲和乙不同去,则不同的选派方案共有种()A. B. C. D.【例215】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)1
本文档为【排列组合综合讲义】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: ¥11.9 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
云中雀2019
暂无简介~
格式:doc
大小:709KB
软件:Word
页数:0
分类:高中数学
上传时间:2020-10-25
浏览量:3