首页 [欧拉定理]欧拉定理

[欧拉定理]欧拉定理

举报
开通vip

[欧拉定理]欧拉定理[欧拉定理]欧拉定理 [欧拉定理]欧拉定理 篇一 : 欧拉定理 欧拉定理 濮阳市第一高级中学 杨英辉 欧拉定理 正多面体 认识欧拉 简单多面体 正多VFE 欧拉定理 证明 意义 小结 欧 拉 定 理 欧拉定理 1.什么叫正多面体, 什么叫正多面体, 什么叫正多面体 正多面体有哪几种, 正多面体有哪几种, 正多面体有哪几种 欧拉定理 数学家欧拉 欧拉定理 欧拉,瑞士数学家, 岁进巴塞尔大 欧拉,瑞士数学家,13岁进巴塞尔大 学读书, 学读书,得到著名数学家贝努利的精心 指导( 指导(欧拉是科学...

[欧拉定理]欧拉定理
[欧拉定理]欧拉定理 [欧拉定理]欧拉定理 篇一 : 欧拉定理 欧拉定理 濮阳市第一高级中学 杨英辉 欧拉定理 正多面体 认识欧拉 简单多面体 正多VFE 欧拉定理 证明 意义 小结 欧 拉 定 理 欧拉定理 1.什么叫正多面体, 什么叫正多面体, 什么叫正多面体 正多面体有哪几种, 正多面体有哪几种, 正多面体有哪几种 欧拉定理 数学家欧拉 欧拉定理 欧拉,瑞士数学家, 岁进巴塞尔大 欧拉,瑞士数学家,13岁进巴塞尔大 学读书, 学读书,得到著名数学家贝努利的精心 指导( 指导(欧拉是科学史上最多产的一位杰 出的数学家,他从19岁开始发表论文 岁开始发表论文, 出的数学家,他从 岁开始发表论文, 直到76岁 他那不倦的一生, 直到 岁,他那不倦的一生,共写下了 886本书籍和论文,其中在世时发表了 本书籍和论文, 本书籍和论文 700多篇论文。彼得堡科学院为了整理他 多篇论文。 多篇论文 的著作,整整用了47年 的著作,整整用了 年。 欧拉定理 欧拉著作惊人的高产并不是偶然的。 欧拉著作惊人的高产并不是偶然的。他 那顽强的毅力和孜孜不倦的治学精神, 那顽强的毅力和孜孜不倦的治学精神,可 以使他在任何不良的环境中工作: 以使他在任何不良的环境中工作:他常常 抱着孩子在膝盖上完成论文。 抱着孩子在膝盖上完成论文。既使在他双 目失明后的17年间 年间, 目失明后的 年间,也没有停止对数学的 研究,口述了好几本书和400余篇的论文。 余篇的论文。 研究,口述了好几本书和 余篇的论文 当他写出了计算天王星轨道的计算要领 后离开了人世。 后离 开了人世。欧拉永远是我们可敬的老 师。 欧拉定理 欧拉研究论著几乎涉及到所有数学分支, 欧拉研究论著几乎涉及到所有数学分支, 对物理力学、天文学、弹道学、航海学、 对物理力学、天文学、弹道学、航海学、建 筑学、音乐都有研究~有许多公式、定理、 筑学、音乐都有研究~有许多公式、定理、 解法、 关于工期滞后的函关于工程严重滞后的函关于工程进度滞后的回复函关于征求同志党风廉政意见的函关于征求廉洁自律情况的复函 数、方程、 解法、函数、方程、常数等是以欧拉名字命 名的。 名的。欧拉写的数学教材在当时一直被当作 标准教程。 世纪伟大的数学家高斯 标准教程。19世纪伟大的数学家高斯 曾说过―研究欧拉的 , )曾说过― 著作永远是了解数学的最好方法‖ 著作永远是了解数学的最好方法‖。欧拉还 是数学符号发明者, 是数学符号发明者,他创设的许多数学符 例如π, , , , , , , 号,例如 ,i,e,sin,cos,tan,Σ, f 等等,至今沿用。 等等, 等等 至今沿用。 欧拉定理 欧拉不仅解决了慧星轨迹的计算问题, 欧拉不仅解决 了慧星轨迹的计算问题, 还解决了使牛顿头痛的月离问题。 还解决了使牛顿头痛的月离问题。对著名的 哥尼斯堡七桥问题‖的完 美解答开创了― ―哥尼斯堡七桥问题‖的完美解答开创了―图论 的研究。欧拉发现, 的研究。欧拉发现,不论什么形状的凸多面 其顶点数V、棱数E、面数F之间总有关 体,其顶点数 、棱数 、面数 之间总有关 系V+F-E=2,此式称为欧拉公式。V+F-E即 ,此式称为欧拉公式。 即 欧拉示性数,已成为―拓扑学‖的基础概念。 欧拉示性数,已成为―拓扑学‖的基础概念。 那么什么是―拓扑学‖ 那么什么是―拓扑学‖, 欧拉是如何发现这个 关系的,他是用什么方法研究的, 关系的,他是用什么方法研究的,今天让我 们沿着欧拉的足迹, 们沿着欧拉的足迹,怀着崇敬的心情和欣赏 的态度探索这个公式...... 的态度探索这个公式 欧拉定理 3.拓扑变形 考虑一个多面体,例如正六面体, 考虑一个多面体,例如正六面体,假定它的面 是用橡胶薄膜做成的,如果充以气体, 是用橡胶薄膜做成的,如果充以气体,那么它会 连续变形,最后可变成一个球面。 连续变形,最后可变成一个球面。 欧拉帮助在我们引入一种新几体学----拓扑学 拓扑学: 欧拉帮助在我们引入一种新几体学 拓扑学: 我们用一种可随意变形但不得撕破或粘连的材料 如橡皮波)做成的图形, 做成的图形,拓扑学就是研究图形 在这种变形过程中的 不变的性质。 在这种变形过程中的不变的性质。 欧拉定理 简单多面体概念 ) 表面经过连续变形可变为球面的多面体, 表面经过连续变形可变为球面的多面体, 叫做简单多面体。 叫做简单多面体。 我们所学的几何体,如棱柱、 我们所学的几何体,如棱柱、棱锥等都是 简单多面体。 简单多面体。 附:简单多面体分类 简单多面体分类 欧拉定理 4.分析正多面体 、F、E的关系 分析正多面体V、 、 的关系 欧拉定理 Microsoft Office Spreadsheet A B C D E F G H I J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 正多面体 正四面体 正六面体 正八面体 正十二面体 正二十面体 顶点数 V 面数F 棱数E V+F-E=, 4 8 6 20 12 4 6 8 12 20 6 12 12 30 30 2 2 2 2 2 是否所有简单多面体都符合这一关系呢, )是否所有简单多面体都符合这一关系呢, 欧拉定理 5.欧拉定理 欧拉定理 简单多面体的顶点数V、面数F及 棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。 欧拉公式。 欧拉公式 公式描述了简单多面体顶点数、 面数、棱数特有的规律。 欧拉定理 应用实例 例1(一个简单多 面体的棱数可能是 吗, (一个简单多面体的棱数可能是6吗 例2(有一各面都是三角形的多面体, (有一各面都是三角形的多 面体, 顶点数V、面数F、棱数E. 顶点数 、面数 、棱数 求证: 求证: , 欧拉定理 6.证明欧拉定理 证明欧拉定理 方法1: 逐步减少多面体的棱数,分析V+F-E 方法 : 逐步减少多面体的棱数,分析 先以简单的四面体ABCD为例分析证法。 去掉一个面,使它变为平面图形,四面体顶点数V、棱 数V与剩下的面数F1变形后都没有变。因此,要研究V、 E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1 去掉一条棱 )去掉一条棱,就减少一个面,V+F1-E不变。依次 去掉所有的面,变为―树枝形‖。 去掉一条棱,就减少一个 从剩下的树枝形中,每去掉一条棱 ) 去掉一条棱 顶点,V+F1-E不变,直至只剩下一条棱。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一 个面,V+F-E =2。 对任意的简单多面体,运用这样的方法 运用这样的方法, 对任意的简单多面体 运用这样的方法,都是只剩下 一条线段。因此公式对任意简单多面体都是正确的。 一条线段 欧拉定理 方法2: 方法 :计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉 一个面,使它变为平面图形,求所 有面内角总和Σα一方面,在原图中利用各 一方面, 面求内角总和。 面求内角总和。 设有F个面,各面的边数为n1,n2,…,nF, 各面内角总和为: Σα = [?1800+?1800 +…+ ?1800] = ?1800 = ?1800 = ?3600 ) 欧拉定理 另一方面,在拉开图中利用顶点求内角总和 另一方面,在拉开图中利用顶点求内角总和。 设剪去的一个面为n边形,其内角和为?1800, 则所有V个顶点中,有n个顶点在边上,V-n个顶点 在中间。中间V-n个顶点处的内角和为?3600, 边上的n个顶点处的内角和?1800。所以,多面 体各面的内角总和: Σα = ?3600+?1800+?1800 ) =?3600. 由得: ?3600 =?3600 所以 V+F-E=2. 欧拉定理 7. 定理的意义 数学规律:公式描述了简单多面体中顶点数、面 )数学规律: 数、棱数之间特有的规律 =V+F-E 叫做欧拉示性数。 欧拉定理告诉我们,简单多面体f =2。 除简单多面体外,还有非简单多面体。例如, 将长方体挖去一个洞,连结底面相应顶点得到的多 面体。它的表面不能经过连续变形变为一个球面, 而能变为一个环面。其欧拉示性数 f =16+16-32=0, 即带一个洞的多面体 带一个洞的多面体的欧拉示性数为0。 带一个洞的多面体 利用欧拉定理可解决一些实际问题 ) 如:是否有棱数为7的正多面体, 欧拉定理 8.内容小结: 内容小结: 内容小结 正多面体5种 拓扑变形 正多面体V、F、E的关系 欧拉定理 证明 认识欧拉 简单多面体概念 应用 欧拉定理的意义 9.思考练习: 思考练习: 思考练习 1) 为什么正多面体只有5种, 2) 否有棱数为7的正多面体, 篇二 : 欧拉定理 篇三 : 欧拉定理:欧拉定理-欧拉其人,欧拉定理-数论定理 在数学及许多分支中都可以见到很多以欧拉命名的常数、公式 和定理。在数论中,欧拉定理是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德?欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。 欧拉定理_欧拉定理 -欧拉其人 欧拉定理 莱昂哈德?欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导(欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的着作,整整用了47年。欧拉着作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论着几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究~有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯曾说过―研究欧拉的着作永远是了解数学的最 好方法‖。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月地问题。对著名的―哥尼斯堡七桥问题‖的完美解答开创了‖图论‖的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为―拓扑学‖的基础概念。 欧拉定理_欧拉定理 -数论定理 内容 在数论中,欧拉定理,是1个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则: 欧拉定理 证明 将1~n中与n互质的数按顺序排布:x1,x2……xφ 我们考虑这么一些数: m1=a*x1;m2=a*x2;m3=a*x3……mφ=a*xφ 1)这些数中的任意2个都不模n同余,因为如果有mS?mR ,就有: mS-mR=a=qn,即n能整除a。但是a与n互质,a与n的最大公因子是1,而xS-xR 2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r,a*xi与n不互质,而这是不可能的。那么 这些数除n的余数,都在x1,x2,x3……xφ中,因为这是1~n中与n互质的所有数,而余数又小于n. 欧拉线 证明 1)证明过程见下图: 2)证明过程见下图 合并图册 欧拉定理 欧拉定理 欧拉定理_欧拉定理 -拓扑公式 合并图册 V+F-E=X,V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X是多面体P的欧拉示性数。 如果P可以同胚于1个球面,那么X=2,如果P同胚于1个接有h个环柄的球面,那么X=2-2h。 X叫做P的拓扑不变量,是拓扑学研究的范围。 欧拉定理_欧拉定理 -经济学 欧拉定理指出:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。该定理又叫做边际生产力分配理论,还被称为产品分配净尽定理。如上所述,要素的价格是由于要素的市场供给和市场需求共同决定。在完全竞争的 条件下,厂商和消费者都被动地接受市场形成的价格。 定理推导 在完全竞争的条件下,厂商使用要素的原则是:要素的边际产品价值等于要素价格。即: P*MPL=W P*MPK=r 由式1和2可得: MPL=W/P MPK=r/p 式5称为欧拉分配定理。它是由于该定理的证明使用了数学上的欧拉定理而得名。 定理证明 假设生产函数为:Q=f,定义人均资本k=K/L 方法1:根据齐次生产函数中不同类型的生产函数进行分类讨论 线性齐次生产函数 n=1,规模报酬不变,因此有: Q/L=f=f=g k为人均资本,Q/L为人均产量,人均产量是人均资本k的函数。 让Q对L和K求偏导数,有: ?Q/?L=?[L*g]/?L=g+L*[dg/dk]*[dk/dL]=g+L*g’*=g-k*g’ ?Q/?K=?[L*g]/ ?K=L*[?g/?k]=L*[dg/dk]*[?k/?K]=L*g’*=g’ 由上面两式,就可以得欧拉分配定理: L*[?Q/?L]+K*[?Q/?K]=L*[g-k*g’]+K*g’=L*g-K*g’+K*g’=L*g=Q 非线性齐次生产函数 1.当n〉1时,规模报酬递增,如果按照边际生产力分配,则产品不够分配给各个生产要素,即: L*[?Q/?L]+K*[?Q/?K]>Q 2.当n L*[?Q/?L]+K*[?Q/?K] 方法2:设1个一般的齐次生产函数Q=f为n齐次,则有: Q=L *g 将该函数对K,对L求偏导数,得: ?Q/?K=g’ ?Q/?L=ng-kg’ 综合上述两式,有: L*+K*=nL*g=nQ 当n=1时,规模报酬不变,该式即为欧拉分配定理 当n〉1时,规模报酬递增,故有: L*[?Q/?L]+K*[?Q/?K]>Q 当n L*[?Q/?L]+K*[?Q/?K] 实例 在技术经济学中,欧拉定理属于一次齐次函数的1个重要性质, 它是说一次齐次函数的数值都可以表示为各自变量和因变量对相应自变量一阶偏导的乘积之和。在理论上,这句话显得很晦涩,可以用1个很形象的例子来解释。 假设有2个人,他们1个有10个胡萝卜的种子,另外1个有种胡萝卜的经验,他们打算合作,前者出种子,后者出劳力,用十天的时间来种植胡萝卜。在这过程中,风调雨顺,没有什么意外,种子全部茁壮成长,拥有种植经验的人也尽职尽责,最后得到的胡萝卜的产量是最大化的,有十公斤。而每个种子的在自然状态下能产出0.5公斤的胡萝卜,劳动者每一天能辛劳能使胡萝卜在最终增加0.5公斤,所以最后的产量也是10=0.5*10+0.5*10,即种子的边际产出乘以资本量加上劳动的边际产出乘以劳动量等于总产出。 上边是对欧拉定理在经济学中一次齐次生产函数的解释。但是它又有什么深刻地含义呢?在宏观经济中,上述的欧拉定理可以被解释为收入的分配,也就是在胡萝卜的例子中,前五公斤的萝卜是由资本所作出的贡献,后五公斤是由劳动所作出的贡献,如果社会这种很理想量化的贡献来分配产出,那么社会的分配时公平也富有效率的,也是能够自动将产出出清的。 这样看来,1个社会的产出如果能用欧拉定理将各种生产要素的贡献清晰量化,按贡献分配产出,那么这个社会是如此的美好啊,至少每个劳动者,每个资本拥有者用了生产的动力,不会像人民公社中的按需分配的成员那样随处搭便车,产生囚徒困境的窘境,也不会像如今这样劳动者到处诉苦说自己的贡献在社会分配中被低估,而国 家有制定最低工资 制度 关于办公室下班关闭电源制度矿山事故隐患举报和奖励制度制度下载人事管理制度doc盘点制度下载 ,结果造成在位者的得利,失业者的痛苦。 也有人一定会指责欧拉定理的理想状态,肯定会说,这样的话整个社会的产出就被当期消费掉了,没有留下盈余成为资本来在将来扩大再生产,我们的后代怎么办?饿肚子么?其实这个问题也是值得考虑的,吃光了的,甚至把种子都吃了,将来当然会一命呜呼,但是盈余让劳动者,资本所有者们在当期享乐,总比把当 这2个也叫做欧拉公式。 上帝创造的公式 将e–cosx+isinx中的x取作π就得到: e—1=0. 这个等式也叫做欧拉公式,它是数学里最令人着迷的1个公式,它将数学里最重要的几个数字联系到了一起:2个超越数:自然对数的底e,圆周率π,2个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是―上帝创造的公式‖,我们只能看它而不能理解它。 欧拉定理_欧拉定理 -意义 1(数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律 2(思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形。 3(引入拓扑学:从立体图到拉开图,各面的形状、长度、距 离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。 定理引导我们进入1个新几何学领域:拓扑学。我们用1种可随意变形但不得撕破或粘连的材料做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。 4(提出多面体分类方法: 在欧拉公式中, f =V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f =2。 除简单多面体外,还有非简单多面体。例如,将长方体挖去1个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为1个球面,而能变为1个环面。其欧拉示性数f =16+16-32=0,即带1个洞的多面体的欧拉示性数为0。 5(利用欧拉定理可解决一些实际问题 如:为什么正多面体只有五种, 足球与C60的关系,否有棱数为7的正多面体,等 欧拉定理_欧拉定理 -证明应用 利用几何画板 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法。 去掉1个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉1个面变为平面图形,证V+F1-E=1 1(去掉一条棱,就减少1个面,V+F1-E不变。依次去掉所有的面,变为―树枝形‖。 2(从剩下的树枝形中,每去掉一条棱,就减少1个顶点,V+F1-E不变,直至只剩下1个点。 以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的1个面,V+F-E =2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。 计算多面体各面内角和 设多面体顶点数V,面数F,棱数E。剪掉1个面,使它变为平面图形,求所有面内角总和Σα 一方面,在原图中利用各面求内角总和。 设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为: Σα = [?180度+?180度+…+ ?180度] = ?180度 = ?180度 = ?360度 另一方面,在拉开图中利用顶点求内角总和。 设剪去的1个面为n边形,其内角和为?180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为?360度,边上的n个顶点处的内角和?180度。 所以,多面体各面的内角总和: Σα = ?360度+?180度+?180度 =?360度 由得: ?360度=?360度 所以 V+F-E=2. 用拓扑学方法证明 图 尝试一下用拓扑学方法证明关于多面体的面、棱、顶点数的欧拉公式。 欧拉公式:对于任意多面体,假设F,E和V分别表示面,棱,角的个数,那末 F-E+V=2。 证明 如图: 1(把多面体看成表面是薄橡皮的中空立体。 2(去掉多面体的1个面,即可完全拉开铺在平面上而得到1个平面中的直线形,像图中?的样子。假设F′,E′和V′分别表示这个平面图形的多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。 3(对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中?的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。 4(如果某1个三角形有一边在边界上,例如图?中的?ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了 ?ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。 5(如果某1个三角形有二边在边界上,例如图?中的?DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉?DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。 6(这样继续进行,直到只剩下1个三角形为止,像图中?的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。 7(因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中?那样。 8(如果最后是像图中?的样子,我们可以去掉其中的1个三角形,也就是去掉一个三角形,三个边和两个顶点。因此F′-E′+V′仍然没有变。 即F′-E′+V′=1 成立,于是欧拉公式:F-E+V=2 得证。 公式应用 例:足球表面由五边形和六边形的皮革拼成,计算一共有多少个这样的五边形和六边形, 答:足球是多面体,满足欧拉公式F,E+V=2,其中F,E,V分别表示面,棱,顶点的个数 设足球表面正五边形和正六边形的面各有x个和y个,那么 面数F=x+y 棱数E=/2 顶点数V=/3 由欧拉公式,x+y,/2+/3=2, 解得x=12。所以,共有12块黑皮子 所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的 对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。 所以白皮子所有边的一半是与黑皮子缝合在一起的 那么白皮子就应该一共有60×2=120条边,120?6=20 所以共有20块白皮子 欧拉定理_欧拉定理 -运用方法 分式 a /+b /+c / 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c 当r=4时值为a +b +c +ab+bc+ca r=5时值为a +b +c +ab+bc+abc 一般的,当r取正整数n时,有a /+b /+c / =? **, 其中i,j,k是非负整数,且i+j+k=n。 复数 由e…θ=cosθ+isinθ,得到: sinθ=/2i cosθ=/2 三角形 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心 的距离,则: d =R -2Rr 多面体 设v为顶点数,e为棱数,f是面数,则 v-e+f=2-2p p为欧拉示性数,例如 p=0 的多面体叫第零类多面体 p=1 的多面体叫第1类多面体 多边形 设1个二维几何图形的顶点数为V,划分区域数为Ar,一笔画 笔数为B,则有: V+Ar-B=1 定理内容 在同1个三角形中,它的外心Circumcenter、重心Gravity、九 点圆圆心Nine-point-center、垂心Orthocenter共线。 其实欧拉公式是有很多的,上面仅是几个常用的。 欧拉定理 若=1,则aφ?1 其中n是正整数,φ是小于n且与n互素的正整数的个数,称欧拉函数。 证:设R={x1,x2,...,xφ}是由小于n且与n互素的全体数组成的集合,a?R={ax1 mod n,ax2 mod n,...,axφ mod n}},对a?R中任一元素axi mod n,因a与n互素,xi与n互素,所以axi与n互素??,又axi mod n 所以aφ?1 。 ?设a,b和c是正整数,=1,a|bc,则a|c。 设a,b和c是正整数,=1,c|a,则=1。 证:设=d且d>1,则有d|b,d|c。由d|c,c|a,?d|a。由于d|a,d|b,所以d是a和b的公因数,而a,b的最大公因数=1,与定义矛盾,因此=1。 设a,b和c是正整数,=1,则=。 证:设=d1,=d2,一方面d1|a,d1|c,d2|a,d2|bc,?d1|a,d1|bc,?d1是a和bc的公因数,依定义:d1?d2 另方面由d2|a,=1及性质得=1。从=1,d2|bc,由性质得d2|c,?d2是a和c的公因数,依定义:d2?d1 从而d2=d1,故=。 推论:若==1,则=1。 ?根据性质gad=gad,有==1。 ?设axi mod n=axj mod n,1?xi,xj?n.?axi?axj,由a与n互素知,a在mod n下有乘法逆元或消去律,?xi?xj,?xi mod n?xj mod n,记xi=nq1+r,xj=nq2+r,?xi-xj=n?xi=xj+n,若q2?q1?xi>n,所以xi=xj。 ?[?]mod m= mod m ?=?xi,?axi??xi,aφ ?xi??xi。? i=1 φ i=1 i=1 i=1 i=1 i=1 φ φ φ φ φ 由每一xi与n互素,知?xi与n互素,?xi在mod n下有乘法逆元。 i=1 i=1 φ φ 2011年~2012学年第一学期 密码学基础 网络工程0901-0902 开课时间:2011-08 《现代密码学》,杨波,清华大学出版社,2007年4月 第4章公钥密码-欧拉定理 证 mod m=?mod m=m+rarb) mod m= mod m=[?]mod m。 费尔玛定理 若p是素数,a正整数,且=1,则ap-1?1 证:欧拉定理取n为素数p,欧拉函数φ=p-1,即得费尔玛定理。
本文档为【[欧拉定理]欧拉定理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_321635
暂无简介~
格式:doc
大小:39KB
软件:Word
页数:18
分类:初中语文
上传时间:2017-09-27
浏览量:98