首页 TPO 32 阅读文本

TPO 32 阅读文本

举报
开通vip

TPO 32 阅读文本TPO 32 阅读文本 Plant Colonization Colonization is one way in which plants can change the ecology of a site. Colonization is a process with two components: invasion and survival. The rate at which a site is colonized by plants depends on both the rate at which i...

TPO 32 阅读文本
TPO 32 阅读文本 Plant Colonization Colonization is one way in which plants can change the ecology of a site. Colonization is a process with two components: invasion and survival. The rate at which a site is colonized by plants depends on both the rate at which individual organisms (seeds, spores, immature or mature individuals) arrive at the site and their success at becoming established and surviving. Success in colonization depends to agreat extent on there being a site available for colonization – a safe site where disturbance by fire or by cutting down of trees has either removed competing species or reduced levels of competition and other negative interactions to a level at which the invading species can become established. For a given rate of invasion, colonization of a moist, fertile site is likely to be much more rapid than that of a dry, infertile site because of poor survival on the latter. A fertile, plowed field is rapidly invaded by a large variety of weeds, whereas a neighboring construction site from which the soil has been compacted or removed to expose a coarse, infertile parent material may remain virtually free of vegetation for many months or even years despite receiving the same input of seeds as the plowed field. Both the rate of invasion and the rate of extinction vary greatly among different plant species. Pioneer species – those that occur only in the earliest stages of colonization – tend to have high rates of invasion because they produce very large numbers of reproductive propagules (seeds, spores, and so on) and because they have an efficient means of dispersal (normally, wind). If colonizers produce short-lived reproductive propagules, then they must produce very large numbers unless they have an efficient means of dispersal to suitable new habitats. Many plants depend on wind for dispersal and produce abundant quantities of small, relatively short-lived seeds to compensate for the fact that wind is not always a reliable means of reaching the appropriate type of habitat. Alternative strategies have evolved in some plants, such as those that produce fewer but larger seeds that are dispersed to suitable sites by birds or small mammals or those that produce long-lived seeds. Many forest plants seem to exhibit the latter adaptation, and viable seeds of pioneer species can be found in large numbers on some forest floors. For example, as many as 1,125 viable seeds per square meter were found in a 100-year-old Douglas fir/western hemlock forest in coastal British Columbia. Nearly all the seeds that had germinated from this seed bank were from pioneer species. The rapid colonization of such sites after disturbance is undoubtedly in part a reflection of the large seed bank on the forest floor. An adaptation that is well developed in colonizing species is a high degree of variation in germination (the beginning of a seed’s growth). Seeds of a given species exhibit a wide range of germination dates, increasing the probability that at least some of the seeds will germinate during a period of favorable environmental conditions. This is particularly important for species that colonize an environment where there is no existing vegetation to ameliorate climatic extremes and in which there maybe great climatic diversity. Species succession in plant communities, i.e., the temporal sequence of appearance and disappearance of species is dependent on events occurring at different stages in the life history of a species important role in determining patterns of succession, especially secondary succession. The species that are first to colonize a site are those that produce abundant seed that is distributed successfully to new sites. Such species generally grow rapidly and quickly dominate new sites, excluding other species with lower invasion and growth rates. The first community that occupies a disturbed area therefore may be composed of species with the highest rate of invasion, whereas the community of the subsequent Siam, 1851 – 1910 In the late nineteenth century, political and social changes were occurring rapidly in Siam (now Thailand). The old ruling families were being displaced by an evolving centralized government. These families were pensioned off (given a sum of money to live on) or simply had their revenues taken away or restricted; their sons were enticed away to schools for district officers, later to be posted in some faraway province; and the old patron-client relations that had bound together local societies simply disintegrated. Local rulers could no longer protect their relatives and attendants in legal cases, and with the ending in 1905 of the practice of forcing peasant farmers to work part-time for local rulers, the rulers no longer had a regular base for relations with rural populations. The old local ruling families, then, were severed from their traditional social context. The same situation viewed from the perspective of the rural population is even more complex. According to the government’s first census of the rural population, taken in 1905, there were about thirty thousand villages in Siam. This was probably a large increase over the figure even two or three decades earlier, during the late 1800s. It is difficult to imagine it now, but Siam’s Central Plain in the late 1800s was nowhere near as densely settled as it is today. There were still forests closely surrounding Bangkok into the last half of the nineteenth century, and even at century’s end there were wild elephants and tigers roaming the countryside only twenty or thirty miles away. Much population movement involved the opening up of new lands for rice cultivation. Two things made this possible and encouraged it to happen. First, the opening of the kingdom to the full force of international trade by the Bowring Treaty (1855) rapidly encouraged economic specialization in the growing of rice, mainly to feed the rice-deficient portions of Asia (India and China in particular). The average annual volume of rice exported from Siam grew from under 60 million kilograms per year in the late 1850s to more than 660 million kilograms per year at the turn of the century; and over the same period the average price per kilogram doubled. During the same period, the area planted in rice increased from about 230,000 acres to more than350,000 acres. This growth was achieve as the result of the collective decisions of thousands of peasants families to expand the amount of land they cultivated, clear and plant new land, or adopt more intensive methods of agriculture. They were able to do so because of our second consideration. freer than they had been half a century earlier. Over the course of the Fifth Reign (1868 – 1910), the ties that bound rural people to the aristocracy and local ruling elites were greatly reduced. Peasants now paid a tax on individuals instead of being required to render labor service to the government. Under these conditions, it made good sense to thousands of peasant families to in effect work full-time at what they had been able to do only part-time previously because of the requirement to work for the government: grow rice for the marketplace. Numerous changes accompanied these developments. The rural population both dispersed and grew, and was probably less homogeneous and more mobile than it had been a generation earlier. The villages became more vulnerable to arbitrary treatment by government bureaucrats as local elites now had less control over them. By the early twentieth century, as government modernization in a sense caught up with what had been happening in the countryside since the 1870s, the government bureaucracy intruded more and more into village life. Provincial police began to appear, along with district officers and cattle registration and land deeds and registration for compulsory military service. Village handicrafts diminished or died out completely as people bought imported consumer goods, like cloth and tools, instead of making them themselves. More economic variation took shape in rural villages, as some grew prosperous from farming while others did not. As well as can be measured, rural standards of living improved in the Fifth Reign. But the statistical averages mean little when measured against the harsh realities of peasant life. Distributions of Tropical Bee Colonies In 1977 ecologists Stephen Hubbell and Leslie Johnson recorded a dramatic example of how social interactions can produce and enforce regular spacing in a population. They studied competition and nest spacing in populations of stingless bees in tropical dry forests in Costa Rica. Though these bees do no sting, rival colonies of some species fight fiercely over potential nesting sites. Stingless bees are abundant in tropical and subtropical environments, where they gather nectar and pollen from a wide variety of flowers. They generally nest in trees and live in colonies made up of hundreds to thousands of workers. Hubbell and Johnson observed that some species of stingless bees are highly aggressive to members of their species from other colonies, while other species are not. Aggressive species usually forage in groups and feed mainly on flowers that occur in high-density clumps. Nonaggressive species feed singly or in small groups and on more widely distributed flowers. Hubbell and Johnson studied several species of stingless bees to determine whether there is a relationship between aggressiveness and patterns of colony distribution. They predicted that the colonies of aggressive species would show regular distributions, while those of nonaggressive species would show random or closely grouped (clumped) distribution. They concentrated their studies on a thirteen-hectare tract of tropical dry forest that contained numerous nests of nine species of stingless bees. Though Hubbell and Johnson were interested in how bee behavior might affect colony distributions, they recognized that the availability of potential nest sites for colonies nest number of potential nest sites was much greater than the number of bee colonies. What did these measurements show the researchers? The number of colonies in the study area was not limited by availability of suitable trees, and a clumped or regular distribution of colonies was not due to an underlying clumped or regular distribution of potential nest sites. Hubbell and Johnson mapped the nests of five of the nine species of stingless bees accurately, and the nests of four of these species were distributed regularly. All four species with regular nest distributions were highly aggressive to bees from other colonies of their own species. The fifth species was not aggressive, and its nests were randomly distributed over the study area. The researchers also studied the process by which the aggressive species establish new colonies. Their observations provide insights into the mechanisms that establish and maintain the regular nest distribution of these species. Aggressive species apparently mark prospective nest sites with pheromones, chemical substances secreted by some animals for communication with other members of their species. The pheromone secreted by these stingless bees attracts and aggregates members of their colony to the prospective nest site; however, it also attracts workers from other nests. If workers from two different colonies arrive at the prospective nest at the same time, they may fight for possession. Fights may be escalated into protracted battles. The researchers observed battles over a nest tree that lasted for two weeks. Each dawn, fifteen to thirty workers from two competing colonies arrived at the contested nest site. The workers from the two colonies faced off in two swarms and displayed and fought with each other. In the displays, pairs of bees faced each other, slowly flew vertically to a height of about three meters, and then grappled each other to the ground. When the two bees hit the ground, they separated, faced off, and performed another aerial display. Bees did not appear to be injured in these fights, which were apparently ritualized. The two swarms abandoned the battle at about 8 or 9 A.M. each morning, only to re-form and begin again the next day just after dawn. While this contest over an unoccupied nest site produced no obvious mortality, fights over occupied nests sometimes kill over 1,000 bees in a single battle.
本文档为【TPO 32 阅读文本】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_196623
暂无简介~
格式:doc
大小:59KB
软件:Word
页数:0
分类:工学
上传时间:2017-09-28
浏览量:32