首页 概率论与数理统计笔记

概率论与数理统计笔记

举报
开通vip

概率论与数理统计笔记概率论与数理统计笔记 概率论基础知识 概率论基础知识 第一章 随机事件及其概率 一 随机事件 ?1 几个概念 1、随机实验:满足下列三个条件的试验称为随机试验; 随机实验: (1)试验可在相同条件下重复进行; (2)试验的 随机实验 可能结果不止一个,且所有可能结果是已知的; (3)每次试验哪个结果出现是未知的;随机试验以后简 称为试验,并常记为 E。 例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况; E3: 、随机事件 随机事件:在试验中可能观察某电话交换台在某段时间内接到...

概率论与数理统计笔记
概率论与数理统计笔记 概率论 基础知识 税务基础知识象棋入门,基础知识常见鼠类基础知识常用电子元器件基础知识电梯基础知识培训资料 概率论基础知识 第一章 随机事件及其概率 一 随机事件 ?1 几个概念 1、随机实验:满足下列三个条件的试验称为随机试验; 随机实验: (1)试验可在相同条件下重复进行; (2)试验的 随机实验 可能结果不止一个,且所有可能结果是已知的; (3)每次试验哪个结果出现是未知的;随机试验以后简 称为试验,并常记为 E。 例如:E1:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况; E3: 、随机事件 随机事件:在试验中可能观察某电话交换台在某段时间内接到的呼唤次数。 2 出现也可能不出现的事情称为随机事件:常记为 A,B,C…… 随机事件 例如,在 E1 中,A 表示“掷出 2 点” 表示“掷出偶数点”均为随机事件。 ,B 3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Ω。每次试验都不可能发生的 必然事件与不可能事件: 必然事件与不可能事件 事情称为不可能事件,记为Φ。 例如,在 E1 中, “掷出不大于 6 点”的事件便是必然事件,而“掷出大于 6 点”的事件便是不可能事 件,以后,随机事件,必然事件和不可能事件统称为事件。 4、基本事件 基本事件:试验中直接观察到的最简单的结果称为基本事件。 基本事件 例如,在 E1 中, “掷出 1 点”“掷出 2 点” , ,……, “掷出 6 点”均为此试验的基本事件。 由基本事件构成的事件称为复合事件,例如,在 E1 中“掷出偶数点”便是复合事件。 5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为 e. 样本空间: 样本空间 例如,在 E1 中,用数字 1,2,……,6 表示掷出的点数,而由它们分别构成的单点集{1},{2},…{6} , , 便是 E1 中的基本事件。在 E2 中,用 H 表示正面,T 表示反面,此试验的样本点有(H,H)(H, },{(T,H)},{(T,T) (T,H)(T,T) , ,其基本事件便是{(H,H)},{(H,T) T)}显然,任何 事件均为某些样本点构成的集合。 例如, 在 E1 中“掷出偶数点”的事件 ,6}。试验中所有样本点构成的集合称为样本 空间。记为Ω。 例如, 在 E1 便可表为{2,4 中,Ω={1,2,3,4,5,6} 在 E2 中,Ω={(H,H)(H,T)(T,H)(T,T)} , , , 在 E3 中,Ω={0,1,2,……} 第 1 页 @kaiziliu 概率论基础知识 例 1,一条新建铁路共 10 个车站,从它们所有车票中任取一张,观察取得车票的票种。 此试验样本空间所有样本点的个数为 NΩ=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京) 若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为 (组合) 例 2(随机地将 15 名新生平 均分配到三个班级中去,观察 15 名新生分配的情况。此试验的样本空间所 有样本点的个数为 第一种方法用组合+乘法原理;第二种方法用排列 ?2 事件间的关系与运算 1、包含 包含:“若事件 A 的发生必导致事件 B 发生,则称事件 B 包含事件 A,记为 A 包含 例如,在 E1 中,令 A 表示“掷出 2 点”的事件,即 A={2} B 表示“掷出偶数”的事件,即 B={2,4, 6}则 B或B A。 2、相等 相等:若 A 相等 B且B A,则称事件 A 等于事件 B,记为 A=B 例如,从一付 52 张的扑克牌中任取 4 张,令 A 表示“取得到少有 3 张红桃” 的事件;B 表示“取得至多有一张不是红桃”的事件。显然 A=B 3、和:称事件 A 与事件 B 至少有一个发生的事件为 A 与 B 的和事件简称为和,记为 A 和 B,或 A+B 例如,甲,乙两人向目标射击,令 A 表示“甲击中目标”的事件,B 表示“乙 击中目标”的事件,则 AUB 表示“目标被击中”的事件。 推广: 有限个 无穷可列个 4、积:称事件 A 与事件 B 同时发生的事件为 A 与 B 的积事件,简称为积,记为 A 积 B 或 AB。 例如,在 E3 中,即观察某电话交换台在某时刻接到的呼唤次数中,令 A={接到偶数次呼唤},B={接到 奇数次呼唤},则 A B={接到 6 的倍数次呼唤} 第 2 页 @kaiziliu 概率论基础知识 推广: 任意有限个 无穷可列个 5、差:称事件 A 发生但事件 B 不发生的事件为 A 减 B 的差事件简称为差,记为 A-B。 差 例如,测量晶体管的β参数值,令 A={测得β值不超过 50},B=,测得β值 不超过 100, ,则,A-B=φ,B-A=,测得β值为 50,β?100, 6、互不相容 互不相容:若事件 A 与事件 B 不能同时发生,即 AB=φ,则称 A 与 B 是互不相容的。 互不相容 例如,观察某定义通路口在某时刻的红绿灯:若 A={红灯亮},B={绿灯亮}, 则 A 与 B 便是互不相容的。 7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 对立: 对立 显然 ,A? =φ 例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。 ?3 事件的运算规律 1、交换律 交换律 A?B=B?A; A?B=B?A 2、结合律 (A?B)?C=A?(B?C) ; 结合律 (A?B)?C=A?(B?C) 3、分配律 A?(B?C)=(A?B)?(A?C) A?(B?C)=(A?B)?(A ?C) 分配律 , 4、对偶律 对偶律 此外,还有一些常用性质,如 A? B 若A A,A?B B(越求和越大) ;A?B A,A?B 等等。 @kaiziliu B(越求积越小) 。 B,则 A? B=B, A? B=A A-B=A-AB= A 第 3 页 概率论基础知识 例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运 算符号表示 下列事件。A={三次都取得合格品},,,三次中至少有一次取得合格品,,,,三次中恰有两次取得合 格品,,,,三次中最多有一次取得合格品, 解: ,,,,,,,, 表示方法常常不唯一,如事件,又可表为 或 例 4,一名射手连续向某一目标射击三次,令,i={第 i 次射击击中目标} , i=1,2,3,试用文字叙述下列事 件: 解: A1A2A3={三次射击都击中目标} A3-A2={第三次击中目标但第二次未击中目标} 例 5,下图所示的电路中,以 A 表示“信号灯亮”这一事件,以 B,C,D 分别表示继电器接点,?,?, ?,闭合,试写出事件 A,B,C,D 之间的关系。 解,不难看出有如下一些关系: 二 事件的概率 ?1 概率的定义 所谓事件 A 的概率是指事件 A 发生可能性程度的数值度量,记为 P(A) 。 规定 关于下班后关闭电源的规定党章中关于入党时间的规定公务员考核规定下载规定办法文件下载宁波关于闷顶的规定 P(A)?0,P(Ω)=1。 1、古典概型中概率的定义 古典概型:满足下列两条件的试验模型称为古典概型。 古典概型 (1)所有基本事件是有限个; (2)各基本事件发生的可能性相同; 例如:掷一匀称的骰子,令 A={掷出 2 点}={2},B={掷出偶数总}={2,4,6}。此试验样本空间为 Ω={1,2,3,4,5,6},于是,应有 1=P(Ω)=6P(A) ,即 P(A)= 。 而 P(B)=3P(A)= 第 4 页 @kaiziliu 概率论基础知识 定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为: 例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间 Ω={(H,H,H) (H,H,T) (H,T,H) (T,H,H) (H,T,T) (T,H,T) (T,T,H) (T,T,T)}。 可见 NΩ=8 令 A={恰有一次出现正面},则 A={(H,T,T) (T,H,T) (T,T,H)} 可见,令 NA=3 故 例 2, 取球问题)袋中有 5 个白球,3 个黑球,分别按下列三种取法在袋中取球。 (取球问题) (1)有放回地取球 有放回地取球:从袋中取三次球,每次取一个,看后放回袋中,再取下一个球; 有放回地取球 (2)无放回地取球 无放回地取球:从袋中取三次球,每次取一个,看后不再放回袋中,再取下一个球; 无放回地取球 (3)一次取球 一次取球:从袋中任取 3 个球。在以上三种取法中均求 A={恰好取得 2 个白球}的概率。 一次取球 解: (1)有放回取球 NΩ=8×8×8=83=512 (袋中八个球,不论什么颜色,取到每个球的概率相等) (先从三个球里取两个白球,第一次取白球有五种情况,第二次取 白球还有五种情况<注意是有放回>,第三次取黑球只有三种情况) (2) 无放回取球 故 (3)一次取球 故 第 5 页 @kaiziliu 概率论基础知识 属于取球问题的一个实例: 设有 100 件产品,其中有 5%的次品,今从中随机抽取 15 件,则其中恰有 2 件次品的概率便为 (属于一次取球模型) 例 3(分球问题)将 n 个球放入 N 个盒子中去,试求恰有 n 个盒子各有一球的概率(n?N) 。 (分球问题) 解: 令 A={恰有 n 个盒子各有一球},先考虑基本事件的总数 先从 N 个盒子里选 n 个盒子,然后在 n 个盒子里 n 个球全排列 故 属于分球问题的一个实例: 全班有 40 名同学,向他们的生日皆不相同的概率为多少,令 A={40 个同学生日皆不相同},则有 故 (可以认为有 365 个盒子,40 个球) 例 4(取数问题) (取数问题) 从 0,1,……,9 共十个数字中随机的不放回的接连取四个数字,并按其出现的先后排成一列,求下列 事件的概率: (1) 四个数排成一个偶数; (2) 四个数排成一个四位数; (3) 四个数排成一个四位偶数; 解:令 A={四个数排成一个偶数},B={四个数排成一个四位数},C={四个数排成一个四位偶数} , , 第 6 页 @kaiziliu 概率论基础知识 例 5(分组问题)将一幅 52 张的朴克牌平均地分给四个人,分别求有人手里分得 13 张黑桃及有人手里 (分组问题) 有 4 张 A 牌的概率各为多少, 解:令 A={有人手里有 13 张黑桃},B={有人手里有 4 张 A 牌} 于是 ,故 不难证明,古典概型中所定义的概率有以下三条基本性质 基本性质: 基本性质 1? P(A)?0 2? P(Ω)=1 3? 若 A1,A2,……,An 两两互不相容,则 2、概率的统计定义 频率: 频率:在 n 次重复试验中,设事件 A 出现了 nA 次,则称: 定的稳定性。示例见下例表 为事件 A 的频率。频率具有一 正面(A)出现的 试验者 抛硬币次数 n 正面(A)出现次数 nA 频率 德?摩尔根 浦丰 皮尔逊 皮尔逊 维尼 2048 4040 12000 24000 30000 1061 2148 6019 12012 14994 第 7 页 0(5180 0(5069 0(5016 0(5005 0(4998 @kaiziliu 概率论基础知识 定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质: 1? 2? 3? 若 A1,A2,……,两两互不相容,则 数学定义) 3、概率的公理化定义 (数学定义) ,如果它满足下列三条公理: 定义 3:设某试验的样本空间为Ω,对其中每个事件 A 定义一个实数 P(A) 1? P(A) ?0(非负性) 2? P(Ω)=1( 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 性) 3? 若 A1,A2,……,An……两两互不相容,则 (可列可加性,简称可加性) 则称 P(A)为 A 的概率 4、 几何定义 假设Ω是 Rn(n=1,2,3)中任何一个可度量的区域,从Ω中随机地选择一点,即Ω中任何一点都有 定义 4:假设 同样的机会被选到,则相应随机试验的样本空间就是Ω,假设事件 A 是Ω中任何一个可度量的子集,则 P(A)==ū(A)/ ū(Ω) ?2 概率的性质 性质 1:若 A P(B-A)=P(B)B, 则 P(B-A)=P(B)-P(A) 证: ——差的概率等于概率之差 B 因为:A 所以:B=A?(B-A)且 A?(B-A)=φ,由概率可加性 得 P(B)=P[A?(B-A)]=P(A)+P(B-A) 即 P(B-A)=P(B)-P(A) 性质 2:若 A B, 则 P(A)?P(B) ——概率的单调性 证:由性质 1 及概率的非负性得 0?P(B-A)=P(B)-P(A) ,即 P(A)?P(B) 性质 3:P(A)?1 证明:由于 A )=1-P(A) =1)=P(Ω-A)=P(Ω)-P(A)=1-P(A) Ω,由性质 2 及概率的规范性可得 P(A)?1 性质 4:对任意事件 A,P( 证明:在性质 1 中令 B=Ω便有 P( 第 8 页 @kaiziliu 概率论基础知识 性质 5:P(φ)=0 证:在性质 4 中,令 A=Ω,便有 P(φ)=P( φ )=1-P(Ω)=1-1=0 加法公式) AUB)=P( +P( AB) 性质 6 (加法公式)对任意事件 A,B,有 P(AUB)=P(A)+P(B)-P(AB) 证:由于 A?B=A?(B-AB)且 A?(B-AB)=φ(见图) φ 由概率的可加性及性质 1 便得 P(A?B)=P[A?(B-AB)]=P(A)+P(B-AB) =P(A)+P(B)-P(AB) 推广: =P( +P( +P( AB) AC) BC)+P(ABC) 推广: P(A?B?C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 例 6 设 10 个产品中有 3 个是次品,今从中任取 3 个,试求取出产品中至少有一个是次品的概率。 解 : 令 C={取 出产 品中至 少 有一 个 是次 品 }, 则 ={取 出产 品中 皆 为正 品 }, 于 是由 性质 4 得 例 7,甲,乙两城市在某季节内下雨的概率分别为 0.4 和 0.35,而同时下雨的概率为 0.15,问在此季节 内甲、乙两城市中至少有一个城市下雨的概率。 解:令 A={甲城下雨},B={乙城下雨},按题意所要求的是 P(A?B)=P(A)+P(B)—P(AB)=0.4+0.35-0.15=0.6 例 8(设 A,B,C 为三个事件,已知 P(A)=P(B)=P(C)=0.25,P(AB)=0,P(AC)=0,P(BC)=0.125,求 A,B,C 至少有 一个发生的概率。 于是所求的概率为 第 9 页 @kaiziliu 概率论基础知识 三 条件概率 ?1 条件概率的概念及计算 发生条件下, 的条件概率, A/B) 。条件概率 A/B) 在已知事件 B 发生条件下,事件 A 发生的概率称为事件 A 的条件概率,记为 P(A/B) 条件概率 P(A/B) 。 通常是不相等的。 与无条件概率 P(A)通常是不相等的。 例 1:某一工厂有职工 500 人,男女各一半,男女职工中非熟练工人分别为 40 人和 10 人,即该工厂职 工人员结构如下: 人数 非熟练工人 其他职工 总和 男 40 210 250 女 10 240 250 总和 50 450 500 现从该厂中任选一职工,令 A= {选出的职工为非熟练工人},B= {选出的职工为女职工} 显然, ;而 , 定义 1 设 A、B 为两事件,如果 P(B)>0,则称 为在事件 B 发生的条件下,事件 A 的条件概率。同样,如果 P(A)>0,则称 为在事件 A 发生条件下,事件 B 的条件概率。 条件概率的计算通常有两种办法: (1)由条件概率的含义计算(通常适用于古典概型) , (2)由条件概率的定义计算。 例 2:一盒子内有 10 只晶体管,其中 4 只是坏的,6 只是好的,从中无放回地取二次晶管,每次取一只, 当发现第一次取得的是好的晶体管时,向第二次取的也是好的晶体管的概率为多少, 解: 令 A={第一次取的是好的晶体管},B={第二次取的是好的晶体管} 按条件概率的含义立即可得: 按条件概率的定义需先计算: ;于是 第 10 页 @kaiziliu 概率论基础知识 例 3:某种集成电路使用到 2000 小时还能正常工作的概率为 0.94,使用到 3000 小时还能正常工作的概 率为 0.87 .有一块集成电路已工作了 2000 小时,向它还能再工作 1000 小时的概率为多大? 解:令 A={集成电路能正常工作到 2000 小时},B={集成电路能正常工作到 3000 小时} 已知::P(A)=0.94, P(B)=0.87 且 ,既有 AB=B 于是 P(AB)=P(B)=0.87 按题意所要求的概率为: ?2 关于条件概率的三个重要公式 1.乘法公式 1.乘法公式 定理 1: , 例 4:已知某产品的不合格品率为 4%,而合格品中有 75%的一级品,今从这批产品中任取一件,求取得的为 一级的概率. 解: 令 A= {任取一件产品为一级品}, 故 P(AB)=P(A) 。于是, B= {任取一件产品为合格品},显然 ,即有 AB=A 所要求的概率便为 例 5:为了防止意外,在矿内安装两个报警系统 a 和 b,每个报警系统单独使用时,系统 a 有效的概率为 0.92, 系统 b 的有效概率为 0.93,而在系统 a 失灵情况下,系统 b 有效的概率为 0.85,试求:(1)当发生意外时,两 个报警系统至少有一个有效的概率;(2)在系统 b 失灵情况下,系统 a 有效的概率. 解: 令 已知 A={系统 a 有效} B={系统 b 有效} , , 对问题(1) ,所要求的概率为 ,其中 (见图) = = 于是 对问题(2),所要求的概率为: = 第 11 页 @kaiziliu 概率论基础知识 推广: 推广:如果 证:由于 所以上面等式右边的诸条件概率均存在,且由乘法公式可得 = = …… (依此类推)= 例 6:10 个考签中有 4 个难签,三个人参加抽签(无放回)甲先,乙次,丙最后,试问(1) 甲、 乙、丙均抽得难 签的概率为多少? (2) 甲、乙、丙抽得难签的概率各为多少? 解: 令 A,B,C 分别表示甲、乙、丙抽得难签的事件, 对问题(1),所求的概率为: 对问题(2), 甲抽得难签的概率为: 乙抽得难签的概率为 丙抽得难签的概率为 其中 于是 第 12 页 @kaiziliu 概率论基础知识 2.全概率公式 2.全概率公式 完备事件组:如果一组事件 完备事件组 在每次试验中必发生且仅发生一个, 即 则称此事件组为该试验的一个完备事件组 例如,在掷一颗骰子的试验中,以下事件组均为完备事件组:? {1},{2}, {3},{4},{5},{6}; ? {1,2,3},{4,5 }, {6}; ? , , (A 为试验中任意一事件) 定理 2 : 设 为一完备事件组, 为一完备事件组 , 且 , 则对于任意事件 A 有 证:由于 且对于任意 ,于是由概率的可加性及 乘法公式便得: 例 7,某届世界女排锦标赛半决赛的对阵如下: 根据以往资料可知,中国胜美国的概率为 0.4 ,中国胜日本的概率 为 0.9,而日本胜美国的概率为 0.5,求中国得冠军的概率。 解:令 H= {日本胜美国}, ={美国胜日本}, A= {中国得冠军} 由全概率公式便得所求的概率为 例 8, 盒中放有 12 个乒乓球,其中 9 个是新的,第一次比赛时,从盒中任取 3 个使用,用后放会盒中, 第二次比赛时,再取 3 个使用,求第二次取出都是新球的概率 解: 令 H 球均为新球} 第 13 页 @kaiziliu ={第一次比赛时取出的 3 个球中有 i 个新球}i=0,1,2,3,A = {第二次比赛取出的 3 个 概率论基础知识 于是 , , , 而 , , , 由全概率公式便可得所求的概率 =0.146 3 贝叶斯公式 定 理 3 : 设 H ,H ,…….H .H 为 一 完 备 事 件 组 , 且 为任意事件, >0, 又设 A 为任意事件,且 P(A) >0,则有 证:由乘法公式和全概率公式即可得到 例 9:某种诊断癌症的实验有如下效果:患有癌症者做此实验反映为阳性的概率为 0.95,不患有癌症者 做此实验反映为阴的概率也为 0.95,并假定就诊者中有 0.005 的人患有癌症。已知某人做此实验反应为 阳性,问他是一个癌症患者的概率是多少, 先验概率 解: 令 H={做实验的人为癌症患者}, ={做实验的人不为癌症患者}, A={实验结果反应为阳性}, {实 验结果反应为阴性},由贝叶斯公式可求得所要求的概率: 第 14 页 @kaiziliu 概率论基础知识 例 10:两信息分别编码为 X 和 Y 传送出去,接收站接收时,X 被误收作为 Y 的概率 0.02,而 Y 被误作为 X 的概率为 0.01.信息 X 与 Y 传送的频繁程度之比为 2:1,若接收站收到的信息为 X,问原发信息也是 X 的概率为多少? 解:设 H={原发信息为 X} 由题意可知 由贝叶斯公式便可求得所要求的概率为 例 11:设有一箱产品是由三家工厂生产的,已知其中 占 的产品是由甲厂生产的,乙、丙两厂的产品各 求所取得 ,已知甲,乙两厂的次品率为 2%,丙厂的次品率为 4%,现从箱中任取一产品(1) 求所取得产 品是次品的概率; (3) 产品是甲厂生产的次品的概率; (2) 问他是由甲厂生产的概率是多少, 解:令 已知所取得产品是次品, 分别表示所取得的产品是属于甲、乙、丙厂的事件,A={所取得的产品为次品} 显然 , , , 对问题(1) ,由乘法公式可得所要求的概率: 对问题(2) ,由全概率公式可得所要求的概率 对问题(3) ,由贝叶斯公式可得所要求的概率 第 15 页 @kaiziliu 概率论基础知识 四 独立性 ?1 事件的独立性 的概率, 如果事件 B 的发生不影响事件 A 的概率,即 独立。 则称 事件 A 对事件 B 独立。 的概率, 如果事件 A 的发生不影响事件 B 的概率,即 , 独立。 则称事件 B 对事件 A 独立 不难证明,当 时,上述两个式子是等价的。 事实上,如果 ,则有 反之,如果 ,则有 即 同样可证 总之 定 义 , 1 ,则称事件 A 与事件 B 相互独立。 相互独立。 可见事件独立性是相互的。 为两个事件, 设 A,B 为两个事件,如果 例 1,袋中有 3 个白球 2 个黑球,现从袋中(1)有放回; (2)无放回的取两次球,每 次取一球,令 A={第一次取出的是白球} B={第二次取出的是白球} 问 A,B 是否独立, 解: (1)有放回 有放回取球情况,则有 有放回 可见, ,可见 A,B 独立。 2*3 (2)无放回 无放回取球情况,则有 无放回 可见, ,故 A,B 不独立。 (实际上就是抓阄模型) 第 16 页 @kaiziliu 概率论基础知识 例 2,设有两元件,按串联和并联方式构成两个系统?,?(见图)每个元件的可靠性(即元件正常工作的 概率)为 r(0<r<1).假定两元件工作彼此独立,求两系统的可靠性. 解: 令 A= {元件 a 正常工作} , B= { 元件 b 正常工作} ,且 A,B 独 立。C1= {系统 I 正常工作 }, C2={系统 II 正常工作} 于是系统 I 的可靠性为 系 统 II 的 可 靠 性 为 显然 ,系统?可靠性大于系统?的可靠性。 定义: 为三个事件, AB)=P( ,P AC)=P( 定义:设 A,B,C 为三个事件,如果 P(AB)=P(A)P(B) P(AC)=P(A)P(C) , , ,P ABC)=P( 为相互独立的。 P(BC)=P(B)P(C) P(ABC)=P(A)P(B)P(C) 则称 A,B,C 为相互独立的。 BC)=P( , 定 义 2 : 设 A1 , A2 , … … An 为 n 个 事 件 , 如 果 对 任 意 正 整 数 及上述事件中的任意 P 互独立的。 互独立的。 下面几个结论是常用的 下面几个 结论是常用的 : 结论 ……, 则称这 n 个事件 A1,A2……,An 是相 其它三个必成立。 证:设 A,B 成立,即 , 于是有 故 独立。利用这个结果便可证明其它结论,即 (2)如果 相互独立,则 (3) 如果 相互独立,则 第 17 页 @kaiziliu 概率论基础知识 证: 例 3:三人独立地破译一个密码,他们能译出的概率分别为 求密码能被译出的概率 解:令 Ai,,第 个人能译出密码, ,I=1,2,3 ;A={密码能被译出},所要求的概率为 例 4:设每支步枪击中飞机的概率为 (2)若要以 ,(1)现有 250 支步枪同时射击,求飞机被击中的概率; 概率击中飞机,问需多少支步枪同时射击, 1,2,……,n;A={飞机被击中} 解: 令 Ai=,第 i 支步枪击中飞机, 对问题(1) ,n=250,所要求的概率为 对问题(2) 为所需的步数,按题意 ,n , 即 , 即 于是得 ?2 独立重复试验 独立重复试验 在相同条件下,将某试验重复进行 n 次,且每次试验中任何一事件的概率不受其它次试 验结果的影响,此种试验称为 n 次独立重复试验。 称此试验为贝努里试验 贝努里试验 贝努里试 n 重贝努里试验 将贝努里试验独立重得 n 次所构成 n 次独立重得试验称为 n 重贝努里试验。 例如, (1)将一骰子掷 10 次观察出现 6 点的次数——10 重贝努里试验 (2)在装有 8 个正品,2 个次品的箱子中,有放回地取 5 次产品,每次取一个,观察取得次品的次数 ——5 重贝努里试验 (3)向目标独立地射击 n 次,每次击中目标的概率为 P,观察击中目标的次数—n 重贝努里试验等等 第 18 页 @kaiziliu 概率论基础知识 一个重要的结果: 一个重要的结果:在 n 重贝努里实验中,假定每次实验事件 A 出现的概率为 p(0<p<1),则在这 n 重贝 努里实验中事件 A 恰好出现 k(k?n)次的概率为 其中 q=1-p 因此,在 n 次独立重复试验中事件 A 恰好出现 k 次的事件便可表为 上式为在 n 次试验中恰有 k 次 A 出现, 而在 另 外 n-k 次 A 不 出 现 的 所 有 可 能 事 件 之 和 , 这 及事件的独立性便可 得到在 n 重贝努里试验中事件 A 恰好出现 k 次的概率为 例 5:设电灯泡的耐用时数在 1000 小时以上的概率为 0.2,求三个灯泡在使用了 1000 小时之后: (1) 恰 有一个灯泡损坏的概率; (2) 至多有一个灯泡损坏的概率。 解:在某一时刻观察三个灯泡损坏情况为 3 重贝努里实验。令 A={灯泡是坏的},则 p=P(A)=0.8 若令 Bi={有 i 个灯泡损坏},i=0,1 2 3;对于问题(1) ,所求的概率为 对于问题(2) ,所求的概率为 例 6:某工厂生产某种产品,其次品率为 0.01 ,该厂以每 10 个产品为一包出售,并保证若包内多于一 个次品便可退货,问卖出的产品与被退的比例多大 解:卖出产品被退回的比例也即卖出一包产品被退回的概率,观测一包内次品(即事件 A, p=P(A)=0.01 ) 数 的 实 验 可 视 为 10 重 贝 努 里 实 验 。 令 令 C={卖出一包被退回},则 则 如果厂方以 20 个产品为一包出售,并保证包内多于 2 个次品便可退货,情况又将如何呢, 完全类似可算得 第 19 页 @kaiziliu 概率论基础知识 第二章 随机变量及其分布函数 一 随机变量及其分布函数 ?1 随机变量的概念 为了对各种各样不同性质的试验能以统一形式表示实验中的事件,并能将微积分等数学工具引进概 率论。我们需引入随机变量的概念。 随机变量: X=X(e),e? 随机变量:设试验的样本空间为 ,在 上定义一个单值实函数 X=X(e),e? ,对试验的每个结果 e,,,,(e)有确定的值与之对应。由于实验结果是随机的, ,,,(e 的取值也是随机的, e,,,,(e)有确定的值与之对应。由于实验结果是随机的,那,,,(e)的取值也是随机的,我们便 ,,,(e)有确定的值与之对应 上的单值实函数,,,( 为一个随机变量。 ,,,(e 称此定义在样本空间 上的单值实函数,,,(e)为一个随机变量。 引进随机变量后,试验中的每个事件便可以通过此随 或在某范围内取值来表示了。 (见图) 通俗讲,随机变量就是依照试验结果而取值的变量。 例 1 向靶子(见图)射击一次,观察其得分,规定 击中区域?得,分 击中区域?得,分 击中区域?得,分 样本空间Ω,,?,?,?, 。定义随机变量 X 表示射击一次的得分 即 于是, 机变量取某个值 例 2 观察某电话交换台,在时间,内接到的呼唤次数。 样本空间Ω,,,,,,,,……, 。可定义随 机变量,就表示在时间,内接到的呼唤次数。于是, ,,,接到呼唤次数不超过,,次,,,,?,,, ,,,接到呼唤次数介于,至,,次之间,,,,?,?,,, ,, 例 3 从一批灯泡中任取一个灯泡作寿命试验。观察所测灯泡的寿命(单位:小时) 样本空间Ω,,,, ,?, 。可定义随机变量,表示所测得灯泡的寿命于是, ,,,测得灯泡寿命大于,,,(小时) ,,,,>500, ,,,测得灯泡寿命不超过,,,,(小时) ,,,,?,,,,, 。 不具明显数量性质的试验也可以定义随机变量表示试验中每个事件。 不具明显数量性质的试验也可以定义随机变量表示试验中每个事件。 例 4 将一枚硬币上抛一次,观察正,反面出现的情况。 试验的样本空间Ω,,,,,, ,,,正面,, ,反面。 可定义随机变量,表示上抛,次硬币正面出现的次数,即 第 20 页 @kaiziliu 概率论基础知识 于是,,,,出现正 面,,,,,,, 用随机变量表示事件常见形式有 。 等等(这里 X 为随机变量,χ,χ1,χ2 等为实数) ?2 分布函数 为随机变量,对任意实数χ, =P{X?χ ?χ} 的分布函数。 定义 设 X 为随机变量,对任意实数 ,则称函数 F( χ)=P{X?χ} 为随机变量 X 的分布函数。 例 1 机房内有两台设备,令 X 表示某时间内发生故障的设备数,并知 P{X=0}=0.5, P{X=1}=0.3, P{X=2}=0.2,求 X 的分布函数 F(χ) 。 解:由于 X 的可能取值为 0,1,2 故应分情况讨论: (1) (2) (3) (4) 当χ<0 时,F(χ)=P{X?χ}=0 当 0?χ<1 时,F(χ)=P{X?χ}=P{X=0}=0.5 当 1?χ<2 时,F(χ)=P{X?χ}=P{X=0}+P{X=1}=0.5+0.3=0.8 当χ?2 时,F(χ)=P{X?χ}=P{X=0}+P{X=1}+P{X=2}=0.5+0.3+0.2=1 总之, 例 2 向一半径为 2 米的圆形靶子射击,假设击中靶上任何一同心圆的概率为该同心圆的面积成正比,且 每次射击必中靶。令 X 表示弹着点到靶心距离,求 X 的分布函数 F(χ) 。 解: 当 χ<0 时,F(χ)=P{X?χ}=0 当 0?χ?2 时,F(χ)=P{X?χ}=P{击中半径为 χ 的同心圆}=λπχ 特别,当χ=2 时,1=F{2}=λπ4,解得 λ=1/4π,代入上式便得 2 当χ>2 时,F(χ)=P{X?χ}=1 第 21 页 @kaiziliu 概率论基础知识 性质 1。F(χ)是单调不减的,即对任意 χ1<χ2,有 F(χ1)?F(χ2) 是单调不减的, ; =0, =1; 2。0?F(χ)?1 且 F(-?)=0,F(+?)=1; +0) F( 。 3。F(χ)为右连续的,即对任意 χ,有 F(χ+0)= F(χ) 为右连续的, 可以证明(略)以上三条性质是分布函数所具有的三条基本共同特性。 利用分布函数可求随机变量落在某些区间上的概率,如 等等。 例 3 在前面打靶的例子中,已知 X 表示弹着点到靶心距离,并求得其分布函数为 于是便可以利用此分布函数,求出击中靶上环形区域(见图)的概率 随机变量分类: 第 22 页 @kaiziliu 概率论基础知识 二 离散型随机变量及其分布律 ?1 离散型随机变量及其分布律的概念 定义: 的所有可能取值为有限个或可列个, 为离散型随机变量。 定义:如果随机变量 X 的所有可能取值为有限个或可列个,则称随机变量 X 为离散型随机变量。 设 X 的所有可能取值为χ 1 ,χ 2 ,……χ n ,……,则称下列一组概率 P{X=χi}=ρi,i=1,2,……,n,…… 为 X 的分布律。分布律也常常写成表 格形式 性质: 性质: 0,一切 1。pi?0,一切 I; 2。 X χ1 χ2 …… χn …… p …… …… 例 1 设袋中装着分别标有-1,2,2,2,3,3 数字的六个球,现从袋中任取一球,令 X 表示取得球上所 标的数字,求 X 的分布律。 解 : X 的 可 能 取 值 为 -1 , 2 , 3 , 且 容 易 求 得 故 X 的分布律为 X p -1 1/6 2 1/2 3 1/3 例:相同条件下,独立的向目标射击 4 次,设每次击中目标的概率为 0.8, 求击中目标次数 X 的分布律 解: X 的可能取值为 0,1,2,3,4 利用二项概率公式便可求得 X 的分布律为 X 0 1 2 3 4 p 0.0016 0.0256 0.1536 0.40 96 0.4096 例 2 社会上定期发行某种奖券,每券一元,中奖率为 p,某人每次买 1 张奖券,如果没有中奖便继续买 一张,直到中奖为止。求该人购买奖券次数 X 的分布律。如果中奖率为 1%,问他至少应买多少张奖券 才能以不少于 99%的概率中奖。 解: (1) 令 Ai={第 i 次购买的奖券中奖},i=1,2,…… X 的分布律为 第 23 页 @kaiziliu 概率论基础知识 X p 1 p 2 (1-p)p 3 (1-p)2p …… …… i (1-p)i-1p …… …… (2)设 n 为所需购买的奖券数,按题意 P{X?n}?99% 即 即 例 4 某产品 40 件,其中有次品 3 件,现从中任取 3 件, (1)求取出的 3 件产品中所含次品数 X 的分布 律; (2)求取出产品中至少有一件次品的概率; (3)求出 X 的分布函数 F(x) ,并作其图形。 解: (1)X 的可能取值为 0,1,2,3,且有 于是 X 的分布律为 X (2)任取 3 件产品中至少含有一件次品的概率为 0 1 0.20 2 2 2 0.01 1 2 3 0.00 0 1 P 0.7865 P{X ? 1}=P{X=1}+P{X=2}+P{X=3}=0.2022+0.0112+0.0001=0.2135 或 P{X=0}=1,0.7865=0.2135 (3)由分布函数定义不难求得 X 的分布函数为 P{X ? 1}=1 , P{X , 1 , 1 , 离散型随机变量其分布函数的图形有如下特点: 离散型随机变量其分布函数的图形有如下特点: 数的图形有如下特点 (1)阶梯形; (3 其跃度为此随机变量在该处取值的概率。 (1)阶梯形; 2)仅在其可能取值处有跳跃; 3)其跃度为此随机变量在该处取值的概率。 阶梯形 (2 仅在其可能取值处有跳跃; ( ( 一般,若 X 的分布律为 P{X=χi }=pi ,i=1,2,……,则 X 落在区间 I 内的概率便为 从而,X 的分布函数与分布律的关系便为 第 24 页 @kaiziliu 概率论基础知识 ?2 几个重要分布 X 1.两点分布 1. 两点分布 如果随机变量 X 的分布律为 p 0 q 1 p 0<p<1,q=1(0,1)两点分布 简称为两点分布, 两点分布, 其中 0<p<1,q=1-p 则称 X 服从参数为 p 的(0,1)两点分布,简称为两点分布,记为 X~B(1,p) 实际背景: 实际背景:在贝努里实验中,设事件 A 的概率为 p(0<p<1) 如果所定义的随机变量 X 表示 A 发生的次 数,即 显然 X 的分布律为 即 X p 0 1 q=1-p 例 5 .一批产品的废品率 品的数目,即 q p 为 5%,从中任取一个进行检查,若令 X 表示抽得废 X~B(1,p) 则 X~B(1,5%)即 X 的分布律为 X p 0 95% 1 5% 2.二项分布 2. 二项分布 如果随机变量 X 的分布律为 p,则称 服从参数为(n,p)的二项分布, X~B(n,p) p,则称 X 服从参数为(n,p)的二项分布,记为 X~B(n,p) q=1, 其中 0,p,1, q=1, 实际背景: 实际背景:由第一章,独立重复实验一段中可知,在 n 重贝努里实验中,如果每次实验事件 A 出现 的概率为 p(0<p<1) ,则在 n 次独立重复实验中 A 恰好出现 k(?n)次的 概率为 于是,在此 n 重贝努里实验中,如果定义随机变量 X 表示事件 A 出现的次数, 则有 即 X~B(n,p) 例 6 某工厂每天用水量保持正常的概率为 ,求最近 6 天内用水量正常天数 X 的分布律,并求用水 ) ,于是 量正常天数不少于 5 天的概率。解:由二项分布实际背景可知 X~B(6, 即 X 的分布律为 X P 0 0.0002 1 0.0044 2 0.0330 3 0.1318 4 0.2966 5 0.3560 6 0.1780 用水量正常天数不少于 5 天的概率为 第 25 页 @kaiziliu 概率论基础知识 例 7 一批产品的废品率为 0.03,进行 20 次独立重复抽样,求出现废品的频率为 0.1 的概率。 解:令 X 表示 20 次独立重复抽样中出现的废品数. X~B(20,0.03) (注意:不能用 X 表示频率, 若 X 表示频率,则它就不服从二项分布)所求的概率为 泊松定理 如果 , 则有 近似公式: 充分大, 足够小( 设 10,p?0.1)时 近似公式 : n 充分大, p 足够小(一般 n?10,p?0.1)时, 有 例 8:利用近似公式计算前例中的概率. 解: 例 9:有 20 台同类设备由一人负责维修,各台设备发生故障的概率为 0.01,且各台设备工作是独立的,试求设 备发生故障而不能及时维修的概率.若由 3 人共同维修 80 台设备情况又如何? 解: (1) 1 人维修 20 台设备. 而不能及时维修的概率为 令 X 表示某时刻发生故障的设备数. X~B(20,0.01) 于是,发生故障 (2)3 人维修 80 台设备 不能及时维修的概率为 假设 X 表示某时刻发生故障的设备数,X~B(80,0.01)于是,发生故障而 第 26 页 @kaiziliu 概率论基础知识 3.泊松分布 3. 泊松分布 如果随机变量 X 的分布律为 数为λ的泊松分布, X~π 数为λ的泊松分布,记为 X~π(λ) 或者 X~P(λ) 其中λ 其中λ,0,则称 X 服从参 实际背景: 内 实际背景:满足下列条件的随机质点流(一串重复出现的事件)称为泊松流。 (1)在时间 流过质点数的概率仅与 有关,与 t 无关; (2)不相交的时间间隔内流过的质点数彼此独立; (3)在 充分短的一瞬间只能流过一个或没有质点流过,要流过 2 个或 2 个以上质点几乎是不可能的。可以证明 泊松流在单位时间内流过质点数便服从泊松分布。 例如:单位时间内放射性物质放射出的粒子数;单位时间内某电话交换台接到的呼唤次数; 单位时间 内走进商店的顾客数等等;均可认为它们服从泊松分布。 例 10:设 且已知 P{X=1}=P{X=2},求 P{X=4} 解 : 由 于 , 即 X 的 分 布 律 为 于 是 有 由条件 P{X=1}=P{X=2} 可得方程 即 即 解得 λ=2,0(弃去) 所以 于是 例 11:设电话交换台每分钟接到的呼唤次数 X 服从参数 λ=3 的泊松分布。 (1)求在一分钟内接到超 7 次呼唤的概率; (2)若一分钟内一次呼唤需要占用一条线路。求该交 换台至少要设置多少条线路才能以 不低于 90%的概率使用户得到及时服务。 解: (1) 呼唤的概率为 ,其分布律为 于是,在一分钟内接到超过 7 次 (2)设所需设备的线路为 K 条,按题意应有 P{X?K}?90% 即 P{X?K}=1-P{X,K}=1-P{X?K+1}?0.9 即 P{X?K+1}?0.1 查表得 P{X?6}=0.0839 而 P{X?5}=0.1847 ,故应取 K+1=6,即 K=5 所以,至少要设置 5 条线路才 能符合要求。 第 27 页 @kaiziliu 概率论基础知识 连续型随机变量及其概率密度 三 连续型随机变量及其概率密度 ?1 连续型随机变量及其概率密度的概念 所谓连续型随机变量 连续型随机变量是指此随 机变量的可能取值至少应充满某个区间且其分布函数应当是连续的,连续 连续型随机变量 型随机变量 X 有以下特点 特点: 特点 (1) 对任意实数 x, 事实上, ; (2) 下面建立连续型随机变量 X 在实数 x 处的概率密度(概念的引入) 概率密度( 概率密 度 概念的引入) 首先,考虑 X 落在区间 内的概率 其次,求出 X 落在区间 内的平均概率密度 最后, 令 便得到 X 在 x 处的概率密度 令 ,从而便有 1.定义 1.定义 设 的分布函数, 为随机变量 X 的分布函数,如果存在非负函数 x,有 使得对任意实数 x,有 为连续型随机变量, ,则称 X 为连续型随机变量, 概率密度。 为 X 的 概率密度 性质 一切 x; 事实上由于 , 2.一个重要结果 2.一个重要结果 事实上, 第 28 页 @kaiziliu 概率论基础知识 3.几何解释 3.几何解释 (1) ,表明密度曲线 在 x 轴上方; (2) 形的面积为 1; (3) 为顶的曲边梯形面积。 表明密度曲线 与 x 轴所夹图 表明 X 落在区间(a,b)内的概率等于以区间(a,b)为底,以密度曲线 4.关系: 4.关系: 关系 例 1:已知连续型随机变量 X 的概率密度 并计算概率 P{1.5<X<2.5} 为求系数 k 及分布函数 F (χ) , 解: (1) 解得 k =-1/2. 于是 X 的概率密度为 (2)当 当 时, 当 时, 总之, (3) 第 29 页 @kaiziliu 概率论基础知识 例 2.一种电子管的使用寿命为 X 小时,其概率密度为 某仪器内装有三个这 样电子管,试求使用 150 小时内只有一个电子管需要换的概率。 解:首先计算一个电子管使用寿命不超过 150 小时的概率,此概率为 令 Y 表示工作 150 小时内损坏的电子管数,则 Y 服从二项分布 于是,此仪器工作 150 小时内仅需要更换一个电子管的概率 ?2 几个重要分布 几个重要分布 1( 均匀分布 如果随机变量 X 的概率密度为 在区间[a,b ]上服从 则称 X 在区间[a,b ]上服从 均匀分布, X~U[a,b]; 均匀分布,记为 X~U[a,b];其分布函数为 实际背景: 且在其内取值具有 “等可能” 实际背 景 如果实验中所定义的随机变量 X 仅在一个有限区间[a,b]上取值, 性,则 X~U[a,b]。 例 2.某公共汽车从上午 7:00 起每隔 15 分钟有一趟班车经过某车站,即 7:00,7:15,7:30,… 时刻有班车到达此 车站,如果某乘客是在 7:00 至 7:30 等可能地到达此车站候车,问他等候不超过 5 分钟便能乘上汽车的概率。 解:设乘客于 7 点过 X 分钟到达车站,则 X~U[0,30],即其概率密度为 于是该乘客等候不超过 5 分钟便能乘上汽车的概率为 第 30 页 @kaiziliu 概率论基础知识 2(指数分布 如果随机变量 X 的概率密度为 指数分布 其中 服从参数为λ ,则称 X 服从参数为λ的 指数分布, X~E(λ 指数分布,记为 X~E(λ),其分布函数为 实际背景:在实践中,如果随机变量 X 表示某一随机事件发生所需等待的时间,则一般 X~E(λ)。 实际背景 例如,某电子元件直到损坏所需的时间(即寿命) ;随机服务系统中的服务时间;在某邮局等候服务的 等候时间等等均可认为是服从指数分布。 例 3.设随机变量 X 服从参数为λ=0.015 的指数分布, (1) 问 x 应当在哪个范围内, 求 ; (2) 若要使 解:由于 X~E(0.015)即其概率密度为 于是, (1) (2)要使 即 取对数,便得 于是便解得 3.正态分布(高斯分布) 3. 正态分布(高斯分布) 正态分布 ?如果随机变量 X 的概率密度为 其中 为常数, 为常数, 则称 X 服从参数 的正态分布, 的正态分布,记为 X~N 。 ?实际背景:在实践中,如果随机变量 X 表示许许多多均匀微小随机因素的总效应,则它通常将近似地 实际背景: 服从正态分布,如:测量产生的误差;弹着点的位置;噪声电 压;产品的尺寸等等均可认为近似地服从 正态分布。 ?正态密度曲线: 参数 正态密度曲线 对密度曲线的影响 (1) 当 不变 改变时, 改变时,密度曲线 实际上就是落在曲边梯形内部的平均概率) 形状不变, 轴方向左, 形状不变,但位置要沿 x 轴方向左, 开拓思路: 开拓思路: 怎样利用导数作图, 怎样利用导数作图, 右平移。 ( 右平移。 (2)当 (2)当 µ 不变 改变时, 改变时, 变大,曲线变平坦; 变大,曲线变平坦; 第 31 页 变小, 变小,曲线变尖窄 @kaiziliu 概率论基础知识 ?分布函数: 分布函数: 分布函数 (积分是存在的,但是不能用初等函数表示) ? 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 正态分布 : 称 的 正 态 分 布 N(0,1) 为 标 准 正 态 分 布 , 其 概 率 密 度 为 ;分布函数为 (其值有表可查) 其值有表可查) 公式 变量替换,积分限变化 证: 例 5.设 X~ N(0,1) 求 解: 例 6.设 X~N(0,1),要使 问 λ 应为何值, 解:由于 即 反查表,便得 6.一般正态分布与标准分 布的关系: 6.一般正态分布与标准分布的关系: 一般正态分布与标准分布的关系 若 ),其分布函数为 F(X),则有 证: = 第 32 页 @kaiziliu 概率论基础知识 7.正态变量落在区间内的概率: 正态变量落在区间内的概率: 正态变量落在区间内的概 率 如果 则 事实上, 事实上,由 立即可得 例 7. 设 试求 解: 例 8 从某地乘车前往火车站搭火车,有两条路可走(1)走市区路程短,但交通拥挤,所需时 间 ,(2)走郊区路程长,但意外阻塞少,所需时间 。 问若有 70 分钟 可用,应走哪条路线, 解:走市区及时赶上火车的概率为 走郊区及时赶上火车的概率为 ;故应走郊区路线。 如果还有 65 分钟可用情况又如何呢, 同样计算,走市区及时赶上火车的概率为 而走郊区及时赶上火车的概率便为 此时便应改走市区路线。 第 33 页 @kaiziliu 概率论基础知识 四 随机变量函数的分布 ?1 离散型随机变量的情况 所谓随机变量 所谓 随机变量 X 的函数 为 也是一个随机变量, 取值为χ时 是指 Y 也是一个随机变量,且每当 X 取值为 时, Y 的取值便 例如,车床车轴,若令 X 表示车出轴的直径,Y 表示车出轴的横断面积,则 问题:已知 X 的分布,求 的分布。 例 1 设离散型随机变量 X 的分布律为 X P -1 2/10 0 1/10 1 1/10 2 3/10 5/2 3/10 求(1)Y=X-1, (2) 的分布律 解: (1)由随机变量函数的概念便可由 X 的可能值求出 Y 的可能值,见下表: Y=X-1 X P 于是便得 Y 的分布律 Y=X-1 -2 (2)Y=-2X 的可能值由下表给出 Y=-2X2 X P -2 -1 2/10 2 -2 -1 2/10 -1 0 1/10 0 1 1/10 -1 0 1 2 3/10 1 3/2 3/2 5/2 3/10 P 2/10 1/10 1/10 3/10 3/10 0 0 1/10 -2 1 1/10 -8 2 3/10 -25/2 5/2 3/10 由于 Y 的值有相同的,即-2 ,因此应将其合并,相应的概率应按概率的可加性进行相加, 即 最后,得 Y 的分布律为 Y=-2X2 P -25/2 3/10 -8 3/10 -2 3/10 0 1/10 ?2 连续型随机变量的情况 第 34 页 @kaiziliu 概率论基础知识 “分布函数法”——先求 Y=g(x)的分布函数,然后再求导便可得到 Y 的概率密度 分布函 数法” 先求 Y=g(x)的分布函数, 的分布函数 例 2 设随机变量 X 的概率密度为 的概率 密度 ,试求 X 的线性函数 为常数] [ 解:Y 的分布函数 (分布函数的定义) 当 时 于是 (注意复合函数求导) 当 时, 于是, 以上 两种情况所得结果可以合并为如下形式 特别,当 特别 时,则运用上述结果便可得线性变换 的概率密度为 此结果证明:正态分布的随机变量经线性变换后,仍是服从正态分布的随机变量 正态分 布的随机变量经线性变换后, 正态分布的随机变量经线性变换后 特别,取 特别 代入上面结果便得 Y 的 分布为 即 Y~N(0,1) 称 为标准化变换 标准化变换 标准 例 3 证 X~N(0,1),求 的概率密度 (非线性) 第 35 页 @kaiziliu 概率论基础知识 解:Y 的分布函数 当 y>0 时, 于是 当 从 而 总之 例 5 设电流 I 为随机变量,它在 9(安培)~11(安培)之间均匀分布,若此电流通过 2 欧姆电阻, 求 在此电阻上消耗功率 的概率密度 解:W 的分布函数为 两边求导,便得 W 的概率密度 当 因为 I~U[9,11],即其概率密度 所以 , 故 第三章 二维随机变量及其分布 第 36 页 @kaiziliu 概率论基础知识 一、 二维随机变量及其联合分布 设Ω为某实验的样本空间,X 和 Y 是定义在 Ω 上的两个随机变量,则称有序随机变量对(X,Y)为 二维随机变量。 二维随机变量 比如, 研究某地区人口的健康状况可能取身高和体重两个参数作为随机变量; 打靶弹着点选取横纵坐标。 ?3.1.1 联合分布函数 逗号代表二者同时发生 为二维随机变量, ,y)=P{X?χ,Y?y}为 ?χ,Y 定义 1:设(X,Y)为二维随机变量,对任意实数 χ,y,称二元函数 F(χ,y)=P{X?χ,Y?y}为(X, 联合分布函数 几何上, 表示( Y)的分布函数或称为 X 与 Y 的 联合分布函数 。 几何上,F(χ,y)表示(X,Y)落在平面直角坐标系 中以( ,y)为顶点左下方的无穷矩形内的概率(见图) y (x,y) 中以(χ,y)为顶点左下方的无穷矩形内的概率(见图) 二维随机变量( x,y)具有以下四条基本性质 四条基本性质: x 二维随机变量(X,Y)的分布函数 F(x,y)具有以下 四条基本性质 : 0 F(x,y)对每个自变量是单调不减的 对每个自变量是单调不减的, x1<x2, F(x1,y)? y1<y2, 1?F(x,y)对每个自变量是单调不减的,即若 x1<x2,则有 F(x1,y)?F(x2,y); 若 y1<y2,则有 F(x,y1) ?F(x,y2). F(x,y)? F(x,- )=F(- ,y)=F()=0,F(+?,+? 2?0?F(x,y)?1 且 F(x,-?)=F(-?,y)=F(-?,-?)=0,F(+?,+?)=1 F(x,y)对每个自变量是右连续的 对每个自变量是右连续的, x+0,y) F(x,y) F(x,y+0) F(x,y) 3? F(x,y)对每个自变量是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) x1?x2 y1?y2 x2, F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1)?0 4? 对任意 x1 x2, y1 y2 有 F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1) 0 事实上,由图可见(见右图) F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1) 减了两次 例 1 设(X,Y)的分布函数为 解:由性质 4?可得 ?3.1.2 联合分布律 第 37 页 @kaiziliu 概率论基础知识 如果二维随机变量( 的所有可能取值为有限对或可列对,则称( 定义 2:如果二维随机变量(X,Y)的所有可能取值为有限对或可列对,则称(X,Y)为 二维离散型随 机变量 设(X,Y)的所有可能取值为(xi,yj),i ,j=1,2,……,则称下列一组概率 的所 有可能取值为( i,yj) ,j=1,2,……, …… P{X=xi,Y=yj }=pij,i,j=1,2,……,为(X,Y)的分布律,或称为 X 与 Y 的 联合分布律,用 表格 关于规范使用各类表格的通知入职表格免费下载关于主播时间做一个表格详细英语字母大小写表格下载简历表格模板下载 表示: P{X=x }=pij,i,j=1,2,……, 的分布律, 联合分布律,用表格表示: …… X χ1 χ2 ? χi ? ij?0,一切 性质 1. pij?0,一切 i,j, 2. 显然, (X 显然, X,Y)落在区域 D 内的概率应为 ( Y y 1 p11 p21 ? pi1 ? y 2 p12 p22 ? pi2 ? …… …… …… …… …… …… yj p1j p2j ? pij ? …… …… …… …… …… …… 由此便得( 由此便得(X,Y)的分布函数与分布律之间关系为 例 2 两封信随机地向编号为?,?,?,?的四个邮筒内投,令 X 表示投入?号邮筒内的信件数; Y 表示投入?号邮筒内的信件数 。试求(X,Y)的分布律,并分别求投入?,?号邮筒内信件数相同及 至少有一封信投入?,?号邮筒的概率。 解: 总之,(X,Y)的分布律为 X 0 1 2 Y 0 4/16 4/16 1/16 1 4/16 2/16 0 2 1/16 0 0 投入?,?号邮筒内邮件数相等的概率为 至少有一封信投入?,?号邮筒的概率为 P{X?1 或 Y?1}=1-P{X<1 且 Y<1}=1-P{X=0,Y=0}=1-P11=1 - 4/16=3/4 ?3.1.3 联合概率密度 第 38 页 @kaiziliu 概率论基础知识 为二维随机变量( 的分布函数, 定义 3:设 F(χ,у)为二维随机变量(X,Y)的分布函数,如果存在非负函数 ƒ(χ,у)使得对任意实数 χ ,у 有, 则称( 二维连续型随机变量, 则称(X,Y)为 二维连续型随机变量 ,ƒ(χ,у)为(X,Y) 的概率密度或称为 联合概率密度。 的概率密度或称为 X 与 Y 的 联合概率密度 。 性质: 性质: 1。 ƒ(χ,у)?0 一切 χ,у 2。 一个重要结果: 一个重要结果: 几何解释:(见图) :(见图 几何解释:(见图) 应在χ 坐标面的上方; (1)ƒ (χ,у)?0 表明密度曲面 z= ƒ (χ,у)应在χOу 坐标面的上方; 坐标面所围成图形的体积为 ( 2) 表明密度曲面 z= ƒ(χ,у)与 χOу 坐标面所围成图形的体积为 1 表明( 为底, 表明(X,Y)落在平面区域 D 内的概率等以 D 为底,以密度曲面 z= ƒ(χ,у)为顶的曲顶柱体的体积 概率密度与分布函数关系为: 概率密度与分布函数关系为: ; 例 3.设 (X, 的概率密度为 Y) 解:(1)由于 (1) 求常数 A; 求概率 P{X+Y?1} (2) 即得(X,Y)的概率密度为 (2) 二 边缘分布 第 39 页 @kaiziliu 概率论基础知识 ?3.2.1 边缘分布函数 ),X ),于是 设(X,Y)的分布函数为 F(χ,у),X 和 Y 的分布函数分别为 FX(χ), FY(у),于是 同样有 FX( =F( 为二维随机变量( ),关于 的边缘分布函数; FY( =F( 称 FX(χ)=F(χ,+?)为二维随机变量(X,Y),关于 X 的边缘分布函数 ; 称 FY(у)=F(+?, 为二维随机变量( ),关于 的边缘分布函数。 у)为二维随机变量(X,Y),关于 Y 的边缘分布函数 。 例 4.设(X,Y)的分布函数为 解:关于 X 的分布函数 求关于 X 和 Y 的边缘分布函数 同理可得关于 Y 的边缘分布函数 ?3.2.2 边缘分布律 设(X,Y)的分布律为 P{X=χi,Y=yj }=pij,i,j=1,2,……,可以证明 X 的分布律可以由 X 和 Y 的联合 分布律求得: 事实上,由于{Y<+?}为必然事件,于是 同样,Y 的分布律也可以由联合分布律求得: 用表格求边缘分布律只要在联合分布律表上加一行一列,然后分别按行按列相加即可 X Y χ1 χ2 ? χi ? y 1 p11 p21 ? pi1 ? p.1 y 2 p12 p22 ? pi2 ? p.2 …… …… …… …… …… yj p1j p2j ? pij ? ? …… …… …… …… …… ? 1 p2. ? 例 5:袋中有 2 个白球 3 个黑球,从袋中(1)有放回地;(2)无放回地取二次球,每次取一个,令 求(X,Y)的分布律及边缘分布律。 解:(1)有放回的取球 X Y 0 1 0 1 第 40 页 9/25 6/25 6/25 4/25 3/5 2/5 @kaiziliu 概率论基础知识 3/5 2/5 1 0 1 6/20 6/20 3/5 6/20 2/20 2/5 3/5 2/5 1 于是得关于 X 的边缘分布律为 X 0 1 p 3/5 2/5 关于 Y 的边缘分布律 Y 0 p 3/5 (2)无放回取球 X Y 0 1 2/5 1 于是得关于 X 的边缘分布律为 X 0 1 p 3/5 2/5 关于 Y 的边缘分布律 Y 0 p 3/5 1 2/5 问题:由联合可以求边缘,但是由边缘能否求出联合呢,不能~~ 不能~ 问题 不能 ~ 3.2.3 边缘概率密度 ),可以证明 确定, 设(X,Y)的概率密度为 ƒ(χ,у),可以证明 X 的概率密度 ƒX(χ)可以 由 ƒ(χ,у)确定, 。 事实上,由于 X 的分布函数 同样, 同样,Y 的概率密度也可由 ƒ(χ,у)确定 称 ƒX(χ)为二维随机变量(X,Y)关于 X 的边缘概率密度。 为二维随机变量( 的边缘概率密度。 为二维随机变量( 的边缘概率密度。 称 ƒY(y)为二维随机变量(X,Y)关于 Y 的边缘概率密度 。 2 例 6 设区域 D 是由直线 у=χ 和曲线 у=χ 所围成(见图)。设(X,Y)在 D 上 服从均匀分布,即其 概率密度为 其中 SD 为 D 的面积,试求(X,Y)的边缘概率密度。 解: ;当χ?0 或 χ?1 时 ƒX(χ)=0 总之,关于 X 的边缘概率密度为 , 当 y?0 或 y?2 时,ƒY(y)=0 总之,关于 Y 的边缘概率密度为 例 7 设(X,Y)服从二维正态分布 N(μ1,μ2, , ,ρ),即(X,Y)的概率密度为 其中μ1,μ2, (σ1>0), (σ2>0),ρ(-1<ρ<1)为常数。 试求边缘概率密度。 解: 第 41 页 @kaiziliu 概率论基础知识 同样,关于 Y 的边缘概率密度为 三 随机变量的独立性 3.3.1 独立性的概念 ),边缘分布函数为 定义 1:设(X,Y)的分布函数为 F(X,Y ),边缘分布函数为 是相互独立的。 则称 X 与 Y 是相互独立的。 3.3.2 独立性的充要条件 ? 离散型随机变量的情况 定理 1:设(X,Y)的分布律为 ,及 ,边缘分布律分别为 ,则 X 与 Y 相互独立的充分必要条件为 和 ,如果对一切 X, Y 有, 证略。 , 一切 . 例 8. 袋中有 2 个白球,3 个黑球,从袋中(1)有放回地;(2)无放回地 取二次球,每次取一个,令 试问 X 与 Y 是否相互独立, 解:? 有放回地取球 Y 0 X 0 1 9/25 6/25 3/5 6/25 4/25 2/5 3/5 2/5 1 故 X,Y 相互独立 1 容易验证,对一切 有 ? 无放回地取球 第 42 页 @kaiziliu 概率论基础知识 Y 0 X 可见, 0 6/20 6/20 3/5 故 X,Y 不独立 1 1 6/20 3/5 2/20 2/5 2/5 1 (X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P 1/6 1/9 1/18 a b c 例 9:设(X,Y)的分布律为 问 a,b,c 为何值时,X 与 Y 相互独立, 解:(X,Y)的分布律及边缘分布律可由下表给出: Y 1 X 1 2 1/6 a 1/9 b 1/18 c 1/3 a+b+c 1 2 3 需使 X 与 Y 相互独立,下列式子应满足: ? 连续性随机变量的情况 定理 2 设(X,Y)的概率密度为 的充分必要条件为 ,其边缘概率密度为 ,一切 x,y . 证略 和 ,刚 X 与 Y 相互独立 例 10 设 X,Y 相互独立,同分布,均服从 解:由于 X,Y 均在[0,1]上服从均匀分布,即 分布,试求 X 的概率密度为 ,Y 的概率密度为 又由 X 与 Y 相互独立,所以(X,Y)的概率密度为 于是 其中 例 11 设(X,Y), ,证明:,与,相互独立的充要条件为 第 43 页 @kaiziliu 概率论基础知识 证:由于 已求得其边缘概率密度为 “充分性”,当 时,对一切 x,y 有 故 X 与 Y 相互独立。 “必要性”,如果 X,Y 独立,于是应有 即为 解得 四 条件分布 ?3.4.1 条件分布函数 在实践中常会遇到这样的问题:在已知随机变量 Y 取值为 y 条件下,求随机变量 X 落在某区间(a, b)内的概率,即 P{a<X?b?Y=y}由于形式上这一条件概率可表为 因此,对任意实数 x,研究形如 P{X?x?Y=y}的条件概率就是一件很重要的事情。然而,需注意的 是:如果 P{Y=y}=0,上述条件概率将无意义,特别对连续型随机变量 Y,无论 y 为何值,总有 P{Y=y}=0。 为了解决这一问题,可采取下列办法。 设 Y 在区间(y-?y,y)内的概率不为零,即 P{y-?y<Y?y}>0,此时条件概率 P{X?x?y-?y<Y?y} 便有意义,如果当?y?0+时,此条件概率的极限存在,我们便将此极限定义为 P{X?x?Y=y},并称它为 X 的条件分布函数。 及任意? P{y- y<Y?y}, 定义 1:设对固定的实数 y 及任意?y>0 有 P{y-?y<Y?y},如果 存在, 条件下, 的条件分布函数。 存在,则称此极限为在 Y=y 条件下,X 的条件分布函数。 同样, 条件下, 同样,可定义在 X=x 条件下,Y 的条件分布函数 ?3.4.2 条件分布律 为二维离散型随机变量, 定义 2:设(X,Y)为二维离散型随机变量,其分布律为 P{Y=yj}>0, 如果对固定的 j,P{Y=yj}>0,则称下列一组条件概率 条件下, 的条件分布律. 为在 Y=yj 条件下,X 的条件分布律. 同样,对固定 i,若 P{X=xi}>0,则称下列一组条件概率 同样, i,若 P{X=xi}>0,则称下列一组条件概率 条件下,Y 为在 X=xi 条件下,Y 的条件分布律 第 44 页 @kaiziliu 概率论基础知识 不难看出,对数轴上子集 A 有 不难看出, 进而有 例 1 设(X,Y)的分布律为 Y 1 2 3 4 X 1 0.1 0 0.1 0 2 0.3 0 0.1 0.2 3 0 0.2 0 0 试求在条件 X=2 下,Y 的条件分布律。 解:首先求出边缘分布律,见下表 Y X 1 2 3 0.1 0.3 0 0.4 0 0 0.2 0.2 0.1 0.1 0 0.2 0 0.2 0 0.2 0.2 0.6 0.2 1 总之,在 X=2 条件,Y 的条件分布律为 Y 1 2 0 3 4 1 2 3 4 ?3.4.3 条件概率密度 (x)与 (y)分别为关于 和关于 的边缘概率密度。 定义 3:设(X,Y)的概率密度为 f(x,y),fx(x)与 fY(y)分别为关于 X 和关于 Y 的边缘概率密度。 条件下, 的条件概率密度。 为在 Y=y 条件下,X 的条件概率密度。 如果对固定的 x,fx(x)>0 则称 条件下, 的条件概率密度。 为在 X=x 条件下,Y 的条件概率密度。 例 2:设(X,Y)的概率密度为 第 45 页 @kaiziliu 概率论基础知识 解:图绘出使 f(x,y)>0 的区域 首先,求出边缘概率密度,当-1<x<1 时 总之,关于 Y 的边缘概率密度为 下面求条件概率密度 五 二维随机变量函数的分布 第 46 页 @kaiziliu 概率论基础知识 所谓二维随机变量( Z=g 也是一个随机变量,且每当( 所谓二维随机变量(X,Y)的函 数 Z=g(X,Y)是指 Z 也是一个随机变量,且每当(X,Y)取值为 Z=g( (X,Y)时, Z 的取值便为 Z=g(X,Y) 例如,测量一长方形土地,共长为 X,宽为 Y,则其面积便 为 Z=XY。 ?3.5.1 离散型随机变量的情况 例 1:一个仪器由两个主要部件组成,其总长 度为此两部件长度之和,这两个部件长度分别为 X 和 Y, 且相互独立,其分布律分别为 X P 9 0.3 10 0.5 11 0.2 , Y P 6 0.4 7 0.6 按随机变量函数概念可救求出 Z=X+Y 的可能取值, 见 下表 Z=X+Y 6 X 9 10 11 0.12 0.20 0.08 0.18 0.30 0.12 7 15 16 16 17 17 18 求此仪器总长度 Z 的分布律 解: Z=X+Y 首先,写出(X,Y)的联合分布律 Y (X,Y) (9,6) (9,7) (10,6) (10,7) (11,6) (11,7) P 0.12 0.18 0.20 0.30 0.08 0.12 对于相同的值进行合并,相应概率按概率可加性 相加,便得 Z=X+Y 的分布律为 Z=X+Y 15 P 16 17 18 改写为: (x,y) (9,6) (9,7) (10,6) (10,7) (11,6) (11,7) P 0.12 0.18 0.20 0.30 0.08 0.12 0.12 0.38 0.38 0.12 ?3.5.2 连续型随机变量的情况 第 47 页 @kaiziliu 概率论基础知识 利用“分布函数法”求 z=g(X,Y)的概率密度,即首先求 z 的分布函数 利用“分布函数法” z=g(X,Y)的概率密度, 的概率密度 的概率密度。 两边求导便可得到 Z 的概率密度。 解:X 和 Y 的概率密度分别为 由于 X 与 Y 独立,于是(X,Y)的概率密度为 当 z?0 时,显然 F2(z)=0 对 Z 求导,使得 Z 的概率密度 例 4:(和的分布)设(X,Y)的概率密度为 f(x,,y),求 Z=X+Y 的概率密度。 第 48 页 @kaiziliu 概率论基础知识 解:首先求 Z 的分布函数 两边对 z 求导,便得 Z 的概率密度 特别,当 X 与 Y 独立时,有 Z=X+Y 的概率密度: 第 49 页 @kaiziliu 概率论基础知识 例 5:设 X,Y 独立同分布于 N(0,1),试求 Z=X+Y 的概率密度 解: 一般,若 X,Y 独立独立,且 ,则 推广:若 相互独立,且 则 第 50 页 @kaiziliu 概率论基础知识 第四章 随机变量的数字特征 一 数学期望 ?4.1.1 离散型随机变量的数学期望 年龄 18 19 15 20 15 21 5 ? 40 例 1: 全班 40 名同学, 其年龄与人数统计如下: 人数 5 该班同学的平均年龄为: 若令 x 表示从该班同学中任选一同学的年龄,则 x 的分布律为 于是,x 取值的平均值,即该班同学年龄的平均值为 x 18 p 为离散型随机变量, 定义 1:设 x 为离散型随机变量,其分布律为 数 绝对收敛, 的数学期望(或均值) E(X), E(X)= 绝对收敛,则此级数为 x 的数学期望(或均值)既为 E(X),即 E(X)= 如果级 19 20 21 意义:E(X)表示 取值的(加权) 意义:E(X)表示 X 取值的(加权)平均值 例 2:甲、乙射手进行射击比赛,设甲中的环数位 X1,乙中的环数为 X2,已知 X1 和 X2 的分布律分别为: 解:甲的平均中环数为 E(X1)=8 0.1+10 0.6=9.3 乙的平均中环数为 E(X2)=8 0.3=9.1 0.3+9 X1 P X2 P 8 0.3 8 0.2 9 0.1 9 0.5 10 0.6 10 0.3 0.2+9 0.5+10 问谁的平均中环数高, 例 3:设 解:由于 ,求 E(X) ,其分布律为 可见 E(X1)> E(X2),即甲的平均中环数高于乙的 平均中环数。 ,k=0,1,2…,所以 例 4:一无线电台发出呼唤信号被另一电台收到的概率为 0.2,发方每隔 5 秒拍发一次呼唤信号,直到 收到对方的回答信号为止,发出信号到收到回答信号之间需经 16 秒钟,求双方取得联系时,发方发出 呼唤信号的平均数, 第 51 页 @kaiziliu 概率论基础知识 解:令 X 表示双方取得联系时,发方发出呼唤信号的次数。 X 的分布律为 于是,双方取得联系时,发方发出的呼唤信号的平均数为 X 4 5 0.8 P 0.2 0.2 6 7 …n… 由于 ,求导数 将 x=0.8 代如上式,便得 将此结果代入原式便得: ?4.1.2 连续型随机变量的数学期望 (次) 绝对收敛,则称此积 分为 X 的数学期望,记为 E(X),即 , 第 52 页 @kaiziliu 概率论基础知识 例 7: 设风速 V 是一个随机变量, V~U[ 0,a], 且 又设飞机的机翼上所受的压力 W 是风速 V 的函数: 这里 a,k 均为已知正数。试求飞机机翼上所受的平均压力 E(W)。 W 的分布函数为 两边求导,使得 进而便可求得 W 的数学期望 由此运算过程可以看到,不必求出 W 的概率密度 ƒw(z),而根据 V 的概率密度 ƒv(v)也可直接求出 W 的数学期望值,即 ?4.1.3 随机变量函数的数学期望值 1.一维随机变量函数的数学期望 1.一维随机变量函数的数学期望 为随机变量, 定理 1:设 X 为随机变量,Y=g(X), (1) 如果 X 为 离散型随机变量,其分布律为 离散型随机变量, 随机变量 ,且级数 连续型随机变量 随机变量, (X),且积分 (2) 如果 X 为 连续型 随机变量,其概率密度为 ƒ(X),且积分 绝对收敛, 绝对收敛,则有 证略 第 53 页 @kaiziliu 概率论基础知识 例 8:已知 X 的分布律为 X -1 0 1/2 1 2 求: P 1/3 1/6 1/6 1/12 1/4 解: 例 9:设 ,求 高等数学中级数的求和很关键~~ ~ 解: (令 m=k-2) 例 10:设 ,求 解:由于 X 的概率密度为 于是 例 11:国际市场上每年对我国某种商品的需求量为一个随机变量 X(单位:吨),且已知, 并已知每售出一吨此种商品,可以为国家挣得外汇 3 万美元,但若售不出去,而屯售于仓 库,每年需花 费保养费每吨为一万美元,问应组织多少货源可使国家的平均收益达到最大, 解:设 a 为某年准备组织出口此种商品的数量(单位:吨)Y 为国家收益,于是 Y 是 X 的 函数 由于 准备—实际需要=剩余 ,即其概率密度为 于是国家的平均收益为 令 解得 a=3500(吨) 但 国家的收益达到最大。 ,故 E(Y)在 a=3500 时,E(Y)最大,即组织货源为 3500 吨时,可是 第 54 页 @kaiziliu 概率论基础知识 2.二维随机变量函数的数学期望 2.二维随机变量函数的数学期望 2.设(X,Y)为二维随机变量 为二维随机变量, 定理 2.设(X,Y)为二维随机变量,Z=g(X,Y) (1)如果(X,Y)为二维离散型随机变量,其分布律为 如果(X,Y)为二维离散型随机变量, (X,Y)为二维离散型随机变量 (2)如果(X,Y)为二维离散型随机变量ƒ (χ,y) 如果( 证略。 例 12.设(X,Y)的概率密度为 试求 E( ) ?4.1.4 数学期望的性质 为常数, 性质 1 .若 c 为常数,则 E(c)=C 为常数, 为随机变量, 性质 2 .若 c 为常数,X 为随机变量,则 E(cX)=cE(X) 为任意两个随机变量, E(X? 性质 3 .设 X,Y 为任意两个随机变量,则 E(X?Y)=E(X) ?E(Y) 推广: 推广 :设 个随机变量, 为 n 个随机变量,则有 相互独立, 性质 4 .如果 X,Y 相互独立,则有 E(XY)=E(X)E(Y) 推广: 相互独立, 推广 :如果 n 个随机变量 X1,X2,…Xn 相互独立,则有则有 。 例 13.有一队射手 9 人,每位射手击中靶子的概率都是 0.8,进行射击时各自击中靶子为止,但限制每 人最多只打三次,问平均需要为他们准备多少发子弹, 解:令 表示第 i 名射手所需的子弹数 i=1,2,…,9 X 为 9 名射手所需的子弹总数,显然 而 的分布律为 Xi 1 2 3 于是 由性质 3 便可求得 平均所需准备的子 p 0.8 0.2×0.8=0.16 1-0.8-0.16=0.04 弹数: 即平均需准备 12 发子弹。 第 55 页 @kaiziliu 概率论基础知识 二 方差 ?4.2.1 方差的概念 意义:D(X)表示 取值相对于平均值 E(X)的分散程度 意义:D(X)表示 X 取值相对于平 均值 E(X)的分散程度 ?4.2.2 方差的计算 1.由方差定义直接计算 1.由方差定义直接计算 离散就求和 连续就积分 (2)若 X 为连续型随机变量,其概率密度为 ƒ(χ),则 GD 分部积分法 2.由下列重要公式计算 2.由下列重要公式计算 由下列重要公式 证: GD 第 56 页 @kaiziliu 概率论基础知识 例 2.设 解:前面已求得 例 3.设 解:前面已求得 求 注意:记忆常见分布的数学期望和方差(最好都推导一遍) 于是 ,于是 ?4.2.3 方差的性质 (注意:相加时期望没要求相互独立) 思考:如果二者独立 D(X-Y)=D(X)-D(Y) ? 实际上 D(X-Y)=D(X)+D(Y) 性质 4.设 X 为随机变量,则 D(X)=0 的充分必要条件为 其中 c 为常数。 例 4.设 X 为随机变量,E(X),D(X)存在,又设 , 第 57 页 @kaiziliu 概率论基础知识 例 5.设 X~B(n,p),求 E(X), D(X) 解:设在贝努里试验中,事件 A 出现的概率为 p,将此贝努里试验独立重复进行几次,构成 n 重贝努里试 验,令 Xi 0 1 i=1,2,…,n 另一方面,令 X 表示 n 重贝努里试验中事件 A 出现的次数,则 X~B(n,p) ?4.2.4 切比雪夫不等式 为随机变量, (X),D(X)存在 存在, 定理 1:设 X 为随机变量,且 E(X),D(X)存在,则对任意实数 є , 成立 证:只证 X 为连续型随机变量的情况 设ƒ(χ)为 X 的概率密度,则有 例 6.设电站供电网有 10000 盏电灯,夜晚每盏灯开灯的概率为 0.7,且各盏灯开关彼此独立,试估计夜 晚同时开着的灯的数目在 6800 盏至 7200 盏之间的概率。 解:令 X 表示夜晚同时开着灯的数目,X~B(10000,0.7) 可用车比雪夫不等式进行估计此概率 第 58 页 @kaiziliu 概率论基础知识 ?4.2.5 常用分布的数学期望与方差 常用分布的数学期望与方差 1. 二点分布 X,B(1,p) 以下结果要熟记 X p 0 q 1 p 0 q=1-p, E(X)=p, D(X)=pq 2. 二项分布 X,B(n,p) . . 第 59 页 @kaiziliu 概率论基础知识 三 协方差及相关系数 ?4.3.1 ?4.3.1 协方差 1(协方差的概念 滚动 滚 滚动 2.协方差的性质 2.协方差的性质 第 60 页 @kaiziliu 概率论基础知识 滚动 例 2:甲乙两人猜测箱中产品的数目,猜测结果分别记为 X 和 Y (单位:百个)已知(X,Y)的分布律和 边缘分布律由下表给出: X\Y 1 2 3 1 0.2 0.15 0.03 0.38 2 0.1 0.30 0.05 0.45 3 0.01 0.06 0.10 0.17 0.31 0.51 0.18 1 滚 ?4.3.2 相关系数 1(相关系数的概念 例 3: 解:由前面得到的结果可知 ,且 第 61 页 @kaiziliu 概率论基础知识 2( 相关系数的性质 性质 1 性质 2 证: ( ) 例 4:设 X 的分布律为 X P -1 0 1 相关系数为 0,能否说二者无关了,NO 于是 解: 而 所以 滚动 1/2Pi 滚动 滚动 第 62 页 @kaiziliu 概率论基础知识 滚动 问题:相关系数到底说明什么问题, 似乎并不能完全反映两个变量的相关程度。 由此问 题引出性质 3 相关系数实际上叫“线性相关系数”更准确 讨论如下: (1) 积变偶不变,符号看象限 (2) 。 (3) 。 性质 3 滚动 第 63 页 @kaiziliu 概率论基础知识 ?4.3.3 协方差矩阵 为(X1,X2,…,Xn)的协方差矩阵,简称为协差阵。 性质 1. V 为对称阵,即 Vij=Vji,一切 i,j 2. V 主对角线之 元素为 X1,X2…,Xn,的方差,即 Vii=D(Xi),i=1,2,…,n 滚动 滚动 第 64 页 @kaiziliu 概率论基础知识 四 n 维正态分布 ?4.4.1 n 维正态分布的概率密度 对二维正态分布的随机变量(X,Y),其概率密度为 滚动 可见,(X,Y)的概率密度便可表为 定义 1.如果 n 维随机变量(X1,X2,…,XN)的概率密度为 第 65 页 @kaiziliu 概率论基础知识 ?4.4.2 n 维正态分布的几个重要性质 滚动 由性质 3 可知(X,Z)服从二维正态分布,而 即 X 与 Z 不相关,从而 X 与 Z 相互独立。 第 66 页 @kaiziliu 概率论基础知识 第五章 大数定律及中心极限定理 一 大数定律 ?5.1.1 四种收敛性 则称{Xn}依概率收敛于随机变量 X,记为 四种收敛性有以下关系: 第 67 页 @kaiziliu 概率论基础知识 ?5.1.2 几个常用大数定律 1(切比雪夫大数定律 GD 证 : 再由车比雪夫不等式,使得: 即得 推论: 推论: 2( 贝努里大数定律 GD 第 68 页 @kaiziliu 概率论基础知识 即 贝努里大数定律说明:当试验在不变条件下,重复进行多次时,随机事件的频率应在它的概率附近摆动。 特别,概率很小的事件其频率应很小,即在实际的一,二次试验中几乎是不可能发生的,人们常常认为那些概率很 小的事件实际上是不可能发生的。这个原理称之为小概率事件的实际不可能性原理,简称为小概率事件原理,在实践中 有广泛的应用。 二 中心极限定理 所谓中心极限定理是指一系列定理,研究的是随机变量序列{Xn}的前 n 项和, ?5.2.1.独立同分布随机序列的中心极限定理 ?5.2.1.独立同分布随机序列的中心极限定理 定理 3:设随机变量序列 独立、同分布,且 证略 。 第 69 页 @kaiziliu 概率论基础知识 例 1:设有串联电阻网络(见图) 每个电阻的阻值为随机变量,它们独立,同分布都服从均匀分布 U[90,110](单位:欧姆) 解: 由上面给出近似公式,可得所求的概率 此例的结果说明一个很有意义的事实: 两者相比,后者概率值有很大提高,这说明电阻串联可以减少电阻值的随机性,使网络变得更加稳健。 ?5.2.2(隶莫佛--拉普拉斯中心极限定理 ?5.2.2(隶莫佛--拉普拉斯中心极限定理 -- 第 70 页 @kaiziliu 概率论基础知识 GD 由独立同分布中心极限定理便可得: 例 2:人寿保险事业是最早使用概率论的部门之一,保险公司为了估计企业的利润需要计算各种各样事 件的概率,以下便是一例:在一年内某种保险者里,每个人死亡的概率为 0.005,现在有 10000 人参加 此种人寿保险,试求在未来一年内这些保险者中死亡人数不超过 70 人的概率。 解: 按题意要计算的概率为: 例 3 某单位有 200 台电话机,每台电话机大约有 5%的时间需使用外线,假定每台电话机是否使用外线彼 此独立,试问:该单位总机至少需安装多少条外线才可以依 90%以上的概率保证每台电话机在使用外线 时而不能占用, 又设 K 为该单位总机安 装的外线数,按题意即要求的便是使得 P{0?η?k} 90%的最小的 K 值。 第 71 页 @kaiziliu 概率论基础知识 使用盗版,谢谢阅读 版权所有
本文档为【概率论与数理统计笔记】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_633423
暂无简介~
格式:doc
大小:112KB
软件:Word
页数:65
分类:企业经营
上传时间:2017-09-02
浏览量:185