首页 专题数列与不等式证明的放缩 

专题数列与不等式证明的放缩 

举报
开通vip

专题数列与不等式证明的放缩 专题数列与不等式证明的放缩  专题 数列与不等式证明的放缩 全国高考卷中经常出现与数列有关的不等式证明题,尽管不等式的证明有多种方法,但放缩法是证明不等式的主要方法,高考出现的频率比较高,是高考的热点,2007年全国高考数学的19套理科试卷中,在不等式的证明中用到放缩法的有7套试卷,下面介绍几种与数列有关的不等式证明的放缩技巧。 一、直接使用已知的不等式定理进行放缩 a,6a,162例1、已知数列为等比数列,, a,,25n ?求数列的通项公式; a,,n SS,nn,2S?设是数列的前项和,证明,1 (2...

专题数列与不等式证明的放缩 
快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 数列与不等式证明的放缩  专题 数列与不等式证明的放缩 全国高考卷中经常出现与数列有关的不等式证明题,尽管不等式的证明有多种 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,但放缩法是证明不等式的主要方法,高考出现的频率比较高,是高考的热点,2007年全国高考数学的19套理科试卷中,在不等式的证明中用到放缩法的有7套试卷,下面介绍几种与数列有关的不等式证明的放缩技巧。 一、直接使用已知的不等式定理进行放缩 a,6a,162例1、已知数列为等比数列,, a,,25n ?求数列的通项公式; a,,n SS,nn,2S?设是数列的前项和,证明,1 (2004全国卷) na,,nn2Sn,1 aq,6,1解:?设等比数列的公比为q,则有 a,,,n4aq,1621, a,2,1n,1 解得 ?的通项公式为 aa,23,,,nnq,3, n,213,,na,2?由?知,q,3 ? S,,,311n,13 nnnnn,,,222231313331,,,,,,,,,,,SS,nn,2,, ?22221nn,,n,1S3231,,,n,131,,, 222nnn,,32331,,,,SS,nn,2,,1,1 即 221nn,,23231,,,Sn,1 abab,,2评注:第?小题的证明用到均值不等式定理进行放缩,要注意均值 不等式成立的条件:“正数、定值、等号”,常用的不等式定理有:? abab,,2 ? ababab,,,,, 二、利用函数的单调性进行放缩 2例2、设函数,其中,证明对任意的正整数n,不等fxxbx,,,ln1b,0,,,, 1 111,,ln1,,,式都成立(2007山东) ,,23nnn,, 2证明:当时,函数 fxxx,,,ln1b,,1,,,, 332 令函数 hxxfxxxx,,,,,,ln1,,,,,, 2331xx,,,,12, 则 hxxx,,,,32,,xx,,11 , ?当时,,所以函数在上单调递增 x,,,0,hx,0hx0,,,,,,,,,,, 又 ?时,恒有 h00,x,,,0,hxh,,00,,,,,,,, 32 即在上恒成立 xxx,,,ln1x,,,0,,,,, 23 故当时,有 x,,,0,ln1xxx,,,,,,, 1 对任意正整数,取 nx,,,,0,,,n 111,,ln1,,, 则有 所以原不等式成立。 ,,23nnn,, 评注:本题运用函数的单调性进行放缩,本题有较高的难度,难就难在要从放 缩的不等式中去发现要构成的函数,清楚了这一点,后面的难度就不高 了。 三、增加或舍去某些项进行放缩 aa例3、已知数列中的相邻两项,是关于的方程 xa,,21k,2kn 2kkxkxk,,,,32320,的两个根,且 aak,,1,2,3,,,,,212kk, aaaa (?)求,,,; 1357 S (?)求数列的前项和; a2n,,2nn ,,sinn1 (?)记 fn,,3,,,,2sinn,, 2 ffffn2341,,,,,,,,,,,,,1111,,,,,,,, T,,,,,naaaaaaaa,123456212nn,15, (2007浙江) 求证:,,,TnN,,n624 2kkkxk,3xkxk,,,,32320,解:(?)方程的两个根为,, x,2,,12 x,3x,2a,2 当时,,,所以; k,1121 x,6x,4a,4 当时,,,所以; k,2123 x,9x,8a,8 当时,,,所以; k,3125 x,12x,16a,12 当时,,,所以。 k,4127 Saaa,,,, (?) 2122nn 2n,,,,,,,,363222n ,,,, 233nn,n,1,,,22 2 fn,1,,,1,,111T (?)证明:,,,,, naaaaaaaa,123456212nn, 11115T,,T,,, 所以 12aa6aaaa24121234 fn,1,,,1,,111T,,,,,时, 当n,3naaaaaa63456212nn, ,,1111 ,,,,,,,aaaaaa63456212nn,,, 11111111,,,,,,,,,, ,,23nn,662622,6626,, fn,1,,,1,,511T,,,,, 同时, naaaaaa245678212nn, 3 ,,5111 ,,,,,,,aaaaaa245678212nn,,, 51111515,,,,,,, ,,,,,34nn,2492922,249224,, 15,时, 综上,当nN,,,Tn624 15评注:第(?)小题的证明必须注意到,,从上面的证明过程中,T,T12624 我们可以发现,必须勇敢地有依据地放弃某些负数项整个值就会增大, 放弃某些正数项整个值就会缩小,这种方法是很独特的。 1a,2aan,,,例4、设数列满足, 1,2,3,a,,,,1nn,1nan ?证明:对一切正整数成立;(2004重庆卷) nan,,21n an1,2,3,bbbn,,?令,判断与的大小,并说明理由。 ,,nn,1nn ?证法一、当时,,不等式成立 a,,,,2211n,11 假设时,成立 ak,,21nk,k 1122aakk,,,,,,,,,, 那么当时,2212211 nk,,1,,kk,122aakk ak,,,211 ?时,成立 nk,,1,,k,1 综上,由数学归纳法可知:对一切正整数n成立。 an,,21n证法二、当时,,结论成立 a,,,,,23211n,11 假设时结论成立,即 ak,,21nk,k 1 那么当时,由函数单调递增和归纳 fxxx,,,1nk,,1,,,,x 11aak,,,,,21 假设有 kk,1ak,21k 4 1 因此只需证2123kk,,,, 21k, 21,, 就是证: 2123kk,,,,,,21k,,, 1 即证21223kk,,,,,21k, 上式显然成立 所以时,结论成立。 nk,,1 综上,由数学归纳法可知,对一切正整数均成立。 nan,,21n 证法三、由递推公式得 112222aa,,,aa,,, 22nn,nn,,11222aan,n,12 122 „„ aa,,,2 212a1 上述各式相加并化简得 111222aann,,,,,,,,,, 21221 ,,,,n1222aaa,n121 ,,,,,22212nnn,, 又时,显然成立 an,,21n,1n 所以对一切正整数n均成立 an,,21n bb,?解: nn,1 ,,ban11nn,,nn,,11 证明一: 11,,,,,,,,,,2ban21,annn,,,111,,nn,,n 22111,,,,n,,n,,,,,21nn,21nn,,,,,242,,,,, ,,,,11121n,211nn,,,,n,n,22 bb,b,0又,故 nnn,1 5 ,,aaa11nn,1n,,, 证明二:bb ,,,a,,nn,1na1,nnnn,1n,, 112,,,, ,,,,nnna,,,,,nnnn1121,,,,,,n,,,,nna,nna,11,,,,nn ,,nnnn,,,,121,,,,nnn,,,11,,,,,, ,, nnnna,,,11nnnna,,,11,,,,,,,,nnnn,,1bb, 所以 ,,,00a,,nn,1nnnna,,1,,n 22aa22nn,1,,,证明三:bb nn,11,nn 22,,,,aa11112nn ,,,,a2,,,2,,,,n22nan,1nan,1nn,,,, 1121n,111,,,,,,,2,,,0 ,,,,nnn,,121nnn,,121,,,, 22bb,b,0 ? 又 所以 bb,nnn,1,nn1 评注:第?小题证法一、证法三、第?小题证明一均用到舍去某些项进行放缩, 第?小题证法二用到函数单调性进行放缩。 四、对分式中的分子、分母进行放缩 S21Sa,,例5、已知正数数列的前n项和为,且对任意正整数n满足 a,,nnnn ?求数列的通项公式; a,,n 11Tb,?设,数列的前n项和为,求证:; bT,,,nnnnaa2nn,1 11171,,,,,?求证: 222aaan,6221,,12n 241Sa,,21Sa,,解:?把两边平方得 ,,nnnn 6 2? ,41Sa,,,,nn, ? ,241Sa,,,,,,,nn11, ? 22 ?—?得 ,aaaa,,,,20422aaaaa,,,,,,,,nnnn,,11nnnnn,,,111 ,aa,,,20aanN,,,2 ?数列是正数数列 ?即 a,,,,nn,1nn1,n a,1由已知得即 , 21Sa,,210aaa,,,,,111111 an,,21?数列是首项为1,公差为2的等差数列 ? a,,nn 11111,,? b,,,,n,,aannnn,,,,212122121,,,,,,,1nn ,,111111,,,,,, ? T,,,,,,,1n,,,,,,,,nn,,23352121,,,,,,,, 111111,,,,1,,, 即 T,,,n221n,22212n,2,,,, an,,21?由?知 n 1111111,,, ? ,,,,,2222222aaa13521n,,,n12 111,,,,,1 35572121,,,,nn,,,, 1111111,,,,,,,, ,,,,,,,,1,,,,,,,,235572121nn,,,,,,,,,, 1111171,,,,,1,,,1,, ,,6221n,6221n,2321n,,,,,,, 评注:第?小题用到裂项放缩和舍去某些项进行放缩,第?小题用到对分母进 行放缩,通过放缩把陌生的数列求和问题转化为熟悉的数列求和问题。 11111111,,,,,,常见的放缩有,, 22nnnnn,,11nnnnn,,11,,,, 7 222,等等。 nnnn,,,,,111nnnnn,,,,,,2211,,,, 五、利用二项式定理进行放缩 n,1San,,,,21221、已知数列的前项和为,且 na,,,,nnn 1111求证:当时,有,,,, n,3SSS1034n 21n,Snn,,,,,,,,,,352722122证明: ,,n 211nn,,Tnn,,,,,,,,,,,,35272212212 令 ? ,,,,n 21nn,23252212212Tnn,,,,,,,,,,, 则 ? ,,,,n 21nn,,,,,,,,,,Tn32222212 ?,?得 ,,,,n n,1212,,,nn,,,,1221n n,,,,,32212,,,,12, nnSTnn,,,,,,22121Tn,,,,2121 ? ? ,,,,,,nnn nnnn011,211,,,,,,,CCCC? ,,nnnn nnn011,?当时, 221,,,,,,CCCCnn,3,,nnnn n? ? 2121,,,nSnn,,,2121,,,,n 11111,,,,,? ,,Snnnn,,,,212122121,,,,,,n 1111111111,,,,,,,,,,,? ,,,,,,,,,,,,,,,SSS257792121nn,,,,,,,,34n,,111111,, ,,,,,,,25212510n,,, 1111,,,,?时,有成立 n,3SSS1034n 8 an2,,aa,1nnb,,12、已知正项数列的前项和S, nanN,,,,,,,nnn,a22n,, 3 (1)求数列的通项公式 (2)求证: a,,b2,,nn2 2aa,11aS,,a,1a,0(1)解:时,或 ,n,111112 a,1 ?由于是正项数列 ? a,,1n 22aaaa,,nnnn,,11 当时,aSS,,,, n,2nnn,122 整理得 aaaaaa,,,,,,,,nnnnnn,,,111 aa,,1a,0 ? ? nnn,1 ?数列是首项为1,公差为1的等差数列 a,,n ann,,,,,111? ,,n a,1又时,适合上式 ? annN,,n,1,,1n, n1,,b,,(2)证明:由(1)知 1n,,n2,, n12111,,,,,,012,,,,,,CCC? 1,,,,,,nnnnnn222,,,,,, rn11,,,,rn,,,CC ,,,,nnnn22,,,, rnnnr,,,11,,,,11,,rC,,而 n,,rr2!2nrn,,, nnnr,,,1111111,,,,,,,,, rrrr!22nnnr!2 9 nn21111,,,,,,? b,,,,,,,11,,,,,,nn2222,,,,,, 1,,11,,n,,n,112,,,, ,,,,22,,12,,,12 11133,,01 又? ? bCC,,,,,1,,b2nnn,,nn2222,, 评注:利用二项式定理进行放缩,主要方法是舍去某些项或对分式中的分子、 分母进行放缩,放缩的目的是使所得的数列转化为熟悉的、较容易的数 列求和类型,从而达到证明命题的目的。 综合 练习题 用券下载整式乘法计算练习题幼小衔接专项练习题下载拼音练习题下载凑十法练习题下载幼升小练习题下载免费 11,,aan,,,,11a,11、数列满足且 a,,,,nn,11,,n2nnn,2,, ?用数学归纳法证明: an,,22,,n 2?已知不等式对于恒成立,证明: ln1,,xxae,x,0,,n 11,,aa,,,,,122证明:?成立; 21,,22112,,, ?假设时,有成立,那么时, ak,,22nk,nk,,1,,k 11,,aaa,,,,,12 kkk,1,,2kkk,2,, ?结论也成立 nk,,1 根据??得,恒有 an,,22,,n 1111,,,,aaaa,,,,,,,,,,121?? nnnn,1,,,,2121nn,,nnnn,,22,,,, 10 11,,a,,,1, , e,1n,,21n,nn,2,, 对于恒成立 ln1,,xxx,0,, 1111,,aaalnlnln1ln,,,,,,,? nnn,1,,2121nn,,nnnn,,22,, 111? aa,,,,lnlnnn,1n,1nn,12 ?时, lnlnlnlnlnaaaaa,,,,,,,,lnlnlnaaan,2,,,,,,nnnnn,,,112211 111111111,,,,,,,,,,,,,,,, ,,,,,,23nnn,12223212,,,,,, 11,,1,,,n,11111342,,2 ?成立。 ae,,,,,,,,,,112nn1nn222,12 从这个例子可以看出逐差、逐商法本质上是用来对数列的项进行放大或缩 小处理用的。 2a,32、设数列满足,1、2„„,已知 n,aaana,,,1,,1nnnn,1 1111an,,2,,,,?证明; ? n,,,aaa111212n证明?用数列归纳法证明: a,,,312i)时,不等式成立; n,11 ak,,2ii)假设有成立。 nk,n k,,2,,, 那么,时,在递增 fxxkx,,,1nk,,1,,,,2,, 2akkkkk,,,,,,,,,,2212512 ? ,,,,k,1 an,,2an,,2?时,不等式也成立 综上,恒有成立 nk,,1nn 11 11,,1,,,n11111142,,,,??成立 ,,,,,,1,,1nn,1482222,,1,2 n,114,,a?只要证明就可以,其中 122,,,an,,1n 2aan,,2,,1222,,,,aanaann,nnnn1? ,,,,21111,,,,aaaannnn ,,11aa,1ann,,11nn,12,,,,,,,,, 时,, 11212aaan,1,,,,n11,,,111aaann,,121 n,111,,n,1 从而有成立 ? ,12,,a,,na12,,,n n,11111111,,?成立 ,,,,,,,,,,aaa1114822,,,,,12n ?原不等式成立。 从这个例子可以看出,条件与目标有的时候相差很远,需要我们联想才能 121n,,,,,,,qqq1联系起来。如当时就有,特别地 q,1,q1 n,11111,,,,等。 121,,,,,,,,,,n2422,,,, 112,3、已知数列, aaanN,,,a,,,0nnn,,1122n 111n,1,, 求证:? ? ,,ann2aann,2nn,1 12aa,,0证明:?由知 aaa,,nn,1nnn,,112n 112 ? aaaaaa,,,,nnnnnn,,,,111122nn 111,,, 2aannn,1 12 ,,,,,,11111111? ,,,,,,,,,,,,,,aaaaaaaa001121nnn,,,,,,, 111 ,,,,22212n 111,,,,,1 12231,,,,nn,, 111111,,,,,,,,,,,,,,11 ,,2,,,,,,2231nn,n,,,,,, 111a,0,,, 又, ? 22a,,,ann0nan2n 2nnn,,,1112an,,1 又则,,,aaa aaa,,n,1nnn,,,111nnn,,11222nnn 2n,,aa nn,121,,nn 21n,,,aaaa ? nnnn,,1122,,nnn1 111111,,,,,? 22aannnnnn,,,,11nn,1 ,,,,,,11111111? ,,,,,,,,,,,,,,aaaaaaaa001121nnn,,,,,,, 1111111,,,,,,,,,,,,, ,,1,,,,,,12231nn,n,1,,,,,, 11112n,a,221,,,,,,,1又 ? 0an,1ann,,11nn n,1a,0 又 ? a,nnn,2 n,1综上,成立。 ,,annn,2 13 3na3,n,14、已知数列满足,且,,, (2006江西) annN2,aa,,,,,nn1,,21an2n,1 ?求数列的通项公式; a,,n aaan,,,,,2!?证明:对一切正整数,不等式恒成立 n12n ,,3nann11,n,1,解:?由得 a11,,,,,n,,21anaa3n,1nn,1,, ,,11n11,, ?是首项,公比为的等比数列 1,,,a3a31n,, n,nn13, ? ,,,,,1anN,,nnn,a331n nnn,3?证明:由?知 a,,nn131,1,n3 n! ?aaa,,,, 12n111,,,,,,111,,,,,,,,,2n333,,,,,, 1111,,,,,,111,,,,aaan,,,,,2! ?要证 只需证: 12n,,,,,,2n3332,,,,,, 下面用数字归纳法证明: 111111,,,,,,,, 1111,,,,,,,,,,,,,,,,,,,22nn333333,,,,,,,, 1212?当时,左边,右边 ,,,1,,,1n,13333 不等式显然成立 ,,, ?假设时,不等式成立 ,nk,,, 111111,,,,,,,,1111,,,,,,,,即 ,,,,,,,,22kk333333,,,,,,,, 14 1111,,,,,,,,1111,,,,则当时 nk,,1,,,,,,,,21kk,3333,,,,,,,, ,,1111,,,, ,,,,,,11,,,,21kk,,,3333,,,,,, 11111111,,,,,,,,,,,,,,1 ,,,,2112kkkk,,33333333,,,, 1111111,,,,,,,,,,,,,1 ,,,,2112kkk,,3333333,,,, 111,,,,,,,1 ?当时,不等式也成立 ,nk,,1,,,,21k,333,, , 根据??可知,对一切 nN, 111111,,,,,,,,1111,,,,,,,, 不等式都成立 ,,,,,,,,22nn333333,,,,,,,, 111111,,,,,,,,1111,,,,,,,, ? ,,,,,,,,22nn333333,,,,,,,, 11,,1,,,n11111133,,,, ,,,,,,,,,111,,nn1223223,,1,3 aaan,,,,,2!?对一切正整数,不等式恒成立 n12n b,4bba,6baa5 .在数列、中,已知,,且、、成等比数列,、、ab,,,,11nn,1n,1nnnn ,a成等差数列,() nN,n,1 aaabbb?.求、、及、、,由此猜想、的通项公式,并证明你的结论; ab,,,,234234nn11117,,,,,,,,?.证明:. abababab,,,,20112233nn 15 ,bbbaaa解:?.由已知、、成等比数列,、、成等差数列,() nN,nn,1n,1n,1nn 22baa,,b,4a,6, ,,,代入计算得: ?Qabb,,nnn,,1111,nnn1 a,12a,20a,30,,, 234 b,16b,25b,9,,, _______3分 234 ,2ann,,,(1)(2)()nN,由此猜想, ,_______5分 bn,,(1)nn 证明:(1)当,由上面计算知猜想的结论成立; n,1 ,2akk,,,(1)(2)kkN,,1,(2)假设当时结论成立,即,, bk,,(1)nk,,,kk 222a(1)(2)kk,,22k则当时,由于, ?abb,,nk,,1bk,,,,,(1)1,,,,k1kkk12bk(1),k 2?当时,结论成立 _______7分 bn,,(1)nk,,1n 2又 abakkkkk,,,,,,,,,,22(2)(1)(2)(2)(3)kkk,,11 ann,,,(1)(2)当时,也成立 ?,,,,,(1)1(1)2kknk,,1,,,,n ,2ann,,,(1)(2)由(1)(2)所证可知对任意的自然数,结论,都nN,bn,,(1)nn 成立 _______9分 1117,,,?.因为 _______10分 ab,,64102011 2当时,由 abnnnnnnn,,,,,,,,,,,(1)(2)(1)(1)(23)2(1)n,2nn 11111,,,() _______11分 abnnnn,,,2(1)21nn 11111111111,,,,,,,,,,,,,,,,,()abababnn,,,,102233411122nn 1111117 _____13分 ,,,,,,()1022110420n, 16 17
本文档为【专题数列与不等式证明的放缩 】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_597436
暂无简介~
格式:doc
大小:118KB
软件:Word
页数:0
分类:
上传时间:2017-09-17
浏览量:41