首页 数列与不等式综合题(详解)

数列与不等式综合题(详解)

举报
开通vip

数列与不等式综合题(详解)数列与不等式综合题目录一、求和后放缩.......................................................................................................................................................1(一)错位相减......................................................................................

数列与不等式综合题(详解)
数列与不等式综合题目录一、求和后放缩.......................................................................................................................................................1(一)错位相减...............................................................................................................................................1(二)倒序相加...............................................................................................................................................1(三)裂项相消...............................................................................................................................................2(四)借助单调性放缩...................................................................................................................................4(五)利用结论放缩.......................................................................................................................................6二、放缩后求和.......................................................................................................................................................8(六)利用分数性质放缩...............................................................................................................................8(七)综合法.................................................................................................................................................10三、其它方法.........................................................................................................................................................13(八)先猜想后证明.....................................................................................................................................13四、练习.................................................................................................................................................................13(一)错位相减法练习.................................................................................................................................13(二)倒序相加法练习.................................................................................................................................15(三)裂项相消练习.....................................................................................................................................16(四)借助单调性放缩练习.........................................................................................................................17(五)利用结论放缩练习.............................................................................................................................20(六)利用分数性质放缩练习.....................................................................................................................20(七)综合法练习.........................................................................................................................................22ehlong整理一、求和后放缩(一)错位相减例已知,若数列使得,,,,…,,1.fx()=logax(0<==.nn+1++22++4n22(n2)nn44n++4n4441∵n+≥4,当且仅当n=2时等号成立,∴≤=.4+nn++4442n11因此λ≥,即λ的取值范围是,+∞.22(三)裂项相消π例已知为锐角,且,函数2,数列的首1αtana=2−1fx()=xtan2aa+⋅xsin2+{}an41项a=,a=fa().12nn+1第2页共23页ehlong整理(1)求函数fx()的 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 达式;()求证:;2aann+1>111(3)求证:1<+++<2(nn≥2,∈N*).11++aa121+an2tana2(21−)解:()a===.1tan22211−tana1−−(21)ππ∵α为锐角,∴2α=,sin2α+=1.44∴fx()=x2+x.1(2)由(1)知a=fa()=a2+a,又∵a=>0,n+1nnn12∴,,…,都大于.a2a3an0∴.aann+1>1111111()由2,得,即.3an+1=an+=aann(1+an)==−=−an+1an(11++aann)an1+aaannn+1111111111∴+++=−+−++−11++a1a21+anaa12aa23aann+1111=−=−2.aa11nn++a12211333∵,,又∵.a2=+=a3=+>1aann+1>224441∴当时,,∴.n≥2aan+13≥>112<−<2an+1111∴1<+++<2(nn≥2,∈N*).11++aa121+an例正项数列满足,22.2{}ana1=1nan+−(n1)anna−−11−an=0(n≥2)()求;1an241(2)试确定一个正整数N,使得当nN>时,不等式aa++2a+3a++−(n1)a>成立;1234n121n1()求证:.311+<+aa12+++ann解:()22.1nan+−(n1)anna−−11−an=⇒0(nan−an−1)(an+an−1)=0a1∵,,∴,n,又∵,an>0an−1>0nann−=a−10=a1=1ann−1aaaa11111∴nn−−12n2.aan=⋅⋅⋅⋅⋅=⋅1⋅⋅⋅⋅=1ann−−123aan−a1nn−−12n2n!k−111(2)∵(ka−=1)=−(k≥2),kkk!(−1)!k!1111111∴.aa12+++++−2a33a4(n1)an=+−+−++1−=−21!2!2!3!(nn−1)!!n!第3页共23页ehlong整理124111从而有2−>,即<,也即n!>121.n!121n!121∵5!=120<121,6!=720>121,∴当n>5时,n!>121成立,241故N=5,当nN>时,不等式aa++2a+3a++−(n1)a>成立.1234n121nr11nn−1n−2n−+r111()将展开,得r,.31+TCrn+1==⋅⋅⋅⋅⋅⋅an!.12nn证明:(Ⅰ)先用数学归纳法证明,∗.01<10,所以fx()在(0,1)上是增函数.xx++11又在上连续,所以,即.fx()[0,1]f(01)<0,知gx()在221+x(0,1)上增函数.又gx()在[0,1]上连续,所以gx()>=g(00).a2a2因为01<0,即n−>fa()0,从而a0≥22bn2bbb1∴=nn⋅−1⋅⋅2⋅≥⋅.①bnbn1n!bbnn−−12b12a2aa由(Ⅱ)n,得nn+1,an+1<<2an2aaaaaa∴231nn12−.aan=⋅⋅⋅⋅11<⋅⋅⋅⋅aaa12an−12222∵a=,n≥2,01⋅an!2S2例数列的首项,前项和与之间满足n.2{}ana1=1nSnanann=(≥2)21Sn−1(1)求证:数列的通项公式;Sn()设存在正数,使对一切∗都成立,求的最大值.2k(1+S12)(1+S)⋅⋅+(1Sn)≥kn21+n∈Nk解:()证明:∵时,.1n≥2aSSn=nn−−12S2∴n,∴2,整理,得.SSnn−=−1(SSnn−−1)(2Sn−=1)2SnSn−−11−=Sn2SSnn21Sn−11∴−=≥2(n2).SSnn−111数列是以=1为首项,以2为公差的等差数列.SnS1()由()知1,1.21=+1(nn−×=1)22−1Sn=Sn21n−(11+SS)(+)⋅⋅+(1S)设Fn()=12n,则21n+2Fn(+1)(1++Sn+)2122n+4nn++84=n1==>1.Fn()23n+(2nn++1)(23)4nn2++83第5页共23页ehlong整理∵Fn()>0,∴Fn(+>1)Fn()>0,数列{Fn()}单调递增.2故要使Fn()≥k恒成立,只需[Fn()]≥k.又∵[Fn()]=F(1)=3.minmin322∴03<≤k,k=3.3max3(五)利用结论放缩利用结论放缩多指利用函数取得最值的条件或试题中前面已经证明的结论.qp例1设g()x=px−−2f()x,其中fx()=lnx,且gq(e)=e−−2(e为自然对数的底数).xe(I)求p与q的关系;(II)若gx()在其定义域内为单调函数,求p的取值范围;(III)证明:①f(1+x)≤xx(>−1);ln2ln3lnn2nn2−−1②+++<(nn∈N*,≥2).2223nn24(+1)qqqq解:(I)依题意g(x)=px−−2lnx,gp(e)=e−−2,于是pqe2e2−−=−−.xeee11∴()e()0pq−+−pq=,即(pq−)e+=0.ee1∵e0+≠,∴pq=.epp22px2−+xp(II)由(I)知:g(x)=px−−2lnx,gx′()=+p−=.xxx22x令h()x=px2−+2xp.要使gx()在(0,+∞)为单调函数,只需hx()在(0,+∞)满足hx()≥0,或hx()≤0恒成立.①p=0时,hx()=−2x.2x∵x>0,∴hx()<0,∴gx′()=−<0,gx()在(0,+∞)单调递减.x2∴p=0适合题意.1②当p>0时,h()x=px2−+2xp图象为开口向上抛物线,对称轴为x=∈(0,+∞).p11∴.hx()min=h=1−pp1故只需1−≥0,即p≥1时,hx()≥0,gx′()≥0,此时gx()在(0,+∞)上单调递增.p∴p≥1适合题意.1③当p<0时,h()x=px2−+2xp图象为开口向下的抛物线,其对称轴为x=<0,在(0,+∞)上p单调递减,所以,hx()≤=≤h(0)p0.故当p<0时,hx()<0,gx′()<0,此时gx()在(0,+∞)上单调递减.∴p<0适合题意.综合①、②、③可得,p≥1,或p≤0.第6页共23页ehlong整理11−x(III)证明:①即证:lnxx−+≤10(x>0),设kx()=lnx−+x1,则kx′()=−=1.xx当x∈(0,1)时,kx′()>0,kx()单调递增;当x∈(1,+∞)时,kx′()<0,kx()单调递减.∴x=1为kx()的极大值点,∴kx()≤=k(1)0.即lnxx−+≤10,∴lnxx≤−1.lnxx−11②由①知lnxx≤−1,又x>0,∴≤=−1.xxxlnn21∵n∈N*,n≥2时,令xn=2,得≤−1.nn22lnn1111111∴≤−<−=−−.22111n2n2nn(++1)2nn1ln2ln3lnn1111111∴+++<−−−+−++−222(n1)23222334nn+111121nn2−−=n−−1−=.221n+4(n+1)∴结论成立.例2**本题第(Ⅲ)问的证明中用到第(Ⅱ)问的结论,还用到了迭代放缩,较难.52+x已知函数fx()=,设正项数列{a}满足a=1,a+=fa().16−8xn1nn1(I)写出,的值;a2a35(Ⅱ)试比较a与的大小,并说明理由;n4n1(Ⅲ)设数列满足=5-,记.证明:当时,n.{bn}bnanSbni=∑n≥2Sn<−(21)4i=1452+a73解:()n,∵,∴,.1an+1=a1=1a2=a3=16−8an84()∵,,∴,.2an>0an+1>016−>8an002<a,∴a−与a−同号.nn+14n451555∵a−=−<0,∴a−<0,a−<0,…,a−<0.1442434n45∴a<.n4531531()当时,3n≥2bann=−=⋅⋅−=⋅⋅an−−11bn422−−aann−−1142231<⋅⋅bb=2.5nn−−1122−4∴2nn−−13.bbnn<⋅22−−12<⋅bn<<2⋅b1=2第7页共23页ehlong整理1n3−n12−111()1∴4n.Snn=bb12+++b<++⋅⋅⋅+==(21−)42212−4二、放缩后求和(六)利用分数性质放缩例*数列,,2∗.1{an}a1=1ann+1=2a−+n3Nnn(∈)()是否存在常数、,使得数列2是等比数列,若存在,求出、的值,若不1λµ{annn++λµ}λµ存在,说明理由.165n()设=,=++++,证明:当≥时,<<.2bnn−1Snnbbb123bn2Snann+−2(nn++1)(21)3解:若2可化为22,即ann+1=23an−+nann+1+λ(n+1)+µ(n+=1)2(ann+λµ+)2.ann+1=2an+λ+(µ−2)λn−−λµλ=−1,λ=−1,则µλ−=23,解得µ=1.−−λµ=0.∴2,可化为22.ann+1=23an−+nann+1−+(n1)+(n+=1)2(ann−+)又2.a1−1+=≠110故存在,,使得数列2是等比数列.λ=−1µ=1{annn++λµ}()证明:由()得221n−,∴n−12.21annan−+=(1−1+⋅1)2an=2+−nn11故==.bnn−12ann+−2n14422∵b==<=−.nnnn22244−−+12n12n1∴时,222222n≥2Snn=++++<+−bbb123b1+−++−35572nn−+121225=+−1<.32n+136n现证Sn>≥(2).n(nn++1)(21)156n12454当n=2时,S=+bb=+=1,而==,>,故n=2时不等式成n1244(nn++1)(21)3×5545立.1111当n≥3时,由b=>=−,得nn2nn(++1)nn111111111n.Snn=++++>−bbb123b1+−+−++−=−=122334nn+1nn++116∵n≥3,∴2n+>16,1>.21n+nn6∴S>>,不等式成立.nn+1(nn++1)(21)第8页共23页ehlong整理65n综上,当n≥2时,<−2.n3a解:(Ⅰ)由aS==(a−1),得aa=.11a−111aa当n≥2时,aSS=−=a−a,整理,得a=aa,又aa=≠0,∴数列{}annn−−11aa−−11nnnn−11n是首项公比均为a的等比数列.∴nn−1.an=⋅=aaaan21⋅−an()(3aa−−1)2a(Ⅱ)由(Ⅰ)知,b=a−1+=1,若{}b为等比数列,则有b2=bb,nannaa(−1)n21332a+3aa2++22而b=3,b=,b=.12a3a2232a+3aa2++2211∴,解得,再将代入得n,符合题意.=3⋅a=a=bn=3aa2331∴a=.3n()证明:由(Ⅱ)知1.IIIan=31133nn+13nn+−113+1−+1111∴=+=+=+=−++cnnn+1nn+1nn++1111nn113+−13131+−+−31313111+−3311.=−−2+3nn+−131111111111由<,>,得−<−.3nn+133nn++11−133n+−13n++1113nn31111∴.cn=−22−++>−−3n−−13n1113nn3111111∴=+++>−−+−−++−−Tnncc12c222232nn+1333333111111=−−+−++−2n223nn+1333333111.=−−22nn+>−33n13第9页共23页ehlong整理1故Tn>−2.n3例3**放缩后迭代已知递增数列满足:,*,且、、成等比数列.{an}a1=12an++12=aann+(n∈N)a1a2a4()求数列的通项公式;I{an}an()若数列满足:,2*.II{bn}b1≥1bnn+1=−−bn(23)bn+(n∈N)①用数学归纳法证明:;bann≥②记1111,证明:1.Tn=++++Tn<333+++bbb1233+bn2解:()∵,∴数列为等差数列,设公差为.I2an++12=aann+{an}d(d>0)∵、、成等比数列,∴22.a1a2a4a2=aa14⋅⇒+(1d)=×+1(13d)⇒=d1(d>0)∴*.an=nn(=N)()①即证*,用数学归纳法证明如下:IIbnn≥(n∈N)()当时,,原不等式成立.1n=1b1≥1()假设时原不等式成立,即*.2nk=bkk≥(k∈N)那么当nk=+1时,2.bk+1=bk−(k−2)bk+=3bbkk(−+k23)+≥bkkk(−+232)+=bk+>+3k1这说明当nk=+1时原不等式也成立.由()、()可知*,即成立.12bnn≥(k∈N)bann≥②证明:由①知,*,bnn≥(n∈N)b+3∴2,n+1.bn+1=bn−(n−2)bn+=3bbnn(−+n2)+≥32bn+3≥2bn+3bb+3++33bb+3∴nn−−12n2n−1.bn+=3⋅⋅⋅⋅⋅(b1+3)≥⋅⋅⋅222⋅⋅2(bb11+3)=2⋅(+3)bbbnn−−123+++333n−b1+3又∵,b1+≥3411∴+≥n+1∈*,<≤.bn32(kN)0n+1bn+32111−1111111142n111T=++++≤++++==−<.nbbb+++333b+32234222n+1122n+12123n1−2∴1*.Tn<(k∈N)2(七)综合法综合法指利用多种方法放缩求和.例1*放缩裂项已知数列中,,*.{an}a1=1nann+1=2N(a12+++aa)(n∈)()求,,;1a2a3a4()求数列的通项;2{an}an第10页共23页ehlong整理()设数列满足1,12,求证:.3{bn}b1=bn+1=bbnn+bn<≤1(nk)2ak解:(),,.1a2=2a3=3a4=4().①2nann+1=2(a12+++aa).②(n−1)ann=2(aa12+++a−1)①-②,得.nan+1−−(n1)ann=2aa+即:,n+1n1.nann+1=(n+1)a=annaa∴a23n23n.an=a1⋅⋅⋅⋅=⋅⋅⋅12⋅=nn(≥)aa12an−112n−1又,适合上式,a1=1∴*.an=nn(∈N)()由()得:1,12.32b1=bn+−1=bbbbnnnn+>>11>>>b02kk∴是单调递增数列,故要证,只需证.{bn}bn<≤1(nk)bk<11若k=1,则b=<1显然成立.1211若k≥2,则b=b2+−.bbnn+1k11111111kk−+11∴=−+−++−+>−+2=.bkbbkk−1bk−−1bk2bb21b1kkk∴b<<1.kk+1∴.bn<≤1(nk)例2**放缩裂项错位an在数列中,=,n+1=+∈*.{}ana11n1N(n)an2(Ⅰ)试比较与2的大小;aann+2an+1n+1(Ⅱ)证明:当n≥3时,a>−3.n2n−1解:(Ⅰ)由题设知,对任意∗,都有.n∈Nan>0第11页共23页ehlong整理ann+2nan++12n+1∵n+1=+=,∴n+2=,nn1n+1an22an2aa2nnn++12+1∴−=22nn⋅+2=⋅−2aann++21anan+1nn+11an+1aann++11n+22nn++12n+11−=−=22≤.nn10aann++112(nn++2)2(2)∴2.aann++21≤an39(Ⅱ)证法1:由已知得,a=1,a=,a=.12234an∵n+1=+>,∴>,又=,∴>≥.n11aann+1a11ann12()an2−−−当时,nn11n1.n≥3an=−−+1an−1=aann−−11+>−+an−122nn112n1n−1∴aa−>.nn−12n−1934n−1∴a=+a(aa−)(+aa−)++(aa−)>++++.n34354nn−1423422n−134n−1设S=+++.①22342n−1134n−1则S=+++.②222452n11−13111nn−−13n1①-②,得S=++++−=+162−.445nn−11n22222281−22311nn−+11∴S=+−−=−1.442nn−−2122n−191n+nn++11∴a=+−1>21+−=3−.n42n−12nn−−11239证法2:由已知得,a=1,a=,a=.12234n+19①当n=3时,由32−=<,知不等式成立.24n−1k+1②假设当n=kk(≥3)不等式成立,即a>−3,那么当nk=+≥1(k3)时,k2k−1++−kkk1kk(1)k2.aakk+1=+1>+13−−=−3−−+2k2k2k12221kk1(k++1)1kk(+−1)k2k+2要证a>−3,只需证−+>−.k+12(k+−1)12221kk−−12kkkk(+1)即证>,则只需证21k>+k.22kk−−121(k++1)1因为21kk=++CCC01>+=+CCk01成立,所以a>−3成立.kkkkkk+12(k+−1)1这就是说,当nk=+1时,不等式仍然成立.第12页共23页ehlong整理n+1根据①和②,对任意n∈N*,且n≥3,都有a>−3.n2n−1三、其它方法(八)先猜想后证明n例已知数列满足1,11,*.1{an}a1=aann+1=⋅n∈N224()求数列的通项公式;1{an}1b()设,数列满足,n,若对∗成立,试求2a>0{bn}b1=bn+1=−bann≤n∈Naaa(−1)ab(n+a)的取值范围.n+111⋅aaa解:()nn++1224,∴n+21.1=n=aann+111an4⋅241111∵a=,aa=⋅,∴a=.121224241∴{a}是首项和公比均为的等比数列.n2n∴1.an=2a>1,0<8对n∈N∗恒成立,求n2nnnnc的取值范围.1111解:(1)∵Saa=2+,∴S=+≥a2an(2).nnn42n−142nn−−111111∴22.aSSn=−=+−nn−1ananan−−11+an4242整理,得,因为数列各项均为正数,(aann+−−11)(aann−−=20){}an∴.又,aann−=−12a1=2∴.ann=2ca⋅n123n()n,.2bcn==2⋅Tnn=+++=bb12b2c++++22nn222322n123n设M=++++,①n222322n1123n则M=++++,②2n2222342n+1111−⋅111111nnnn+2①-②,得M=+++++−=222−=−1.n234nn+11n++1n122222221−222n+2∴.Mn=21−+2n1n+2∴.Tcn=41−+2n1+n+2由题意,n2对∗恒成立,可以证明n+1,∴,于是命题等41c−>+8n∈N22>+n10−>+2n12n12价于c>对n∈N∗恒成立.n+21−2n+1n+212n+2由1−单调性,得≤−11<,∴18<≤.n+1n+1n+22421−2n+1要使对∗恒成立,只需.Tn>8n∈Nc>8∴c的取值范围是(8,+∞).(二)倒序相加法练习略第15页共23页ehlong整理(三)裂项相消练习设无穷数列具有以下性质:①;②当∗时,.4.**{an}a1=1n∈Naann≤+1aa22aa223(Ⅰ)请给出一个具有这种性质的无穷数列,使得不等式12++++3n<对于任意的aaa234an+12n∈N∗都成立,并对你给出的结果进行验证(或证明);a1(Ⅱ)若n,其中∗,且记数列的前项和,证明:.bn=−⋅1n∈N{bn}nBn02≤数大于后面某数)则称与构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数,例如排列PPij(2,40,3,1)中有逆序“2与1”,“40与3”,“40与1”,“3与1”其逆序数等于4.已知nn+∈2(N∗)个不同数的排列的逆序数是.(,PP12,,Pnn++1,P2)2(1)求(1,3,40,2)的逆序数;()写出的逆序数;2(Pnn++2,P1,,PP21,)anaa++2215()令nn+1,证明.3bn=+22n+≤++bb12+bn3.5时,y>0,且在(3.5,+∞)上为减函数;当x<3.5时,y<0,且x−3.5在(−∞,3.5)上也为减函数.11∴当n=4时,a=1+取最大值a=3;当n=3时,a=1+取最小值a=−1.nn−3.54nn−3.53()先用数学归纳法证明,再证明.312<0,函数fx()=−2(1≤≤x2)递增.xx2x3∴1=f(1)<=afa()+++++++=.nn−166918272⋅336ln2ln3ln4ln3n5nn5+6∴++++<31nn−−=3−.2343n66设数列,满足,,,且数列∗是等9.{an}{bn}ab11==6ab22==4ab33==3{ann+1−∈an}(N)差数列,数列*是等比数列.{bnn−∈2N}()(I)求数列和的通项公式;{an}{bn}(II)是否存在∗,使1,若存在,求出,若不存在,说明理由.k∈N(abkk−∈)0,k2解()由已知,.1aa21−=−2aa32−=−1∴公差d=−−−1(21)=.∴.ann+1−a=(aa21−)+(n−1)×=1n−3∴an=+−+−++−a1(aa21)(aa31)(aann−1)=6+−(2)+−(1)+0++(n−4)[(−+2)(nn−4)](−1)nn2−+718=6+=.22由已知,.b1−=24b2−=22nn−−11∴数列*的公比1,∴11.{bnn−∈2N}()q=bbn−=22(1−)=×4222n∴1.bn=28+×2k2k()设172117491.2fk()=akk−b=kk−+9−28+×=k−−−×87+2222242∴当k≥4时,fk()是增函数.11又∵f(4)=,所以当k≥4时fk()≥,22又∵ff(1)(2)(3)0==f=,1∴不存在k,使fk()∈0,.2第19页共23页ehlong整理(五)利用结论放缩练习略(六)利用分数性质放缩练习10.2006福建理22(原题没有第(Ⅳ)问)已知数列满足,∗.{an}a1=1ann+1=21an+∈(N)(Ⅰ)求数列的通项公式;{an}−−−−(Ⅱ)若数列满足bb1211bb311nnb,证明:是等差数列;{bn}4⋅4⋅4⋅⋅4=(an+1){bn}nn1aaa(Ⅲ)证明:−<12+++...n<(n∈N*);23aa23an+121112(Ⅳ)证明:+++<(nn≥2,且∈N∗).aa23an+13解:(Ⅰ)∵,∴.aann+1=21+aann+1+=12(+1)故数列是首项为,公比为的等比数列.{an+1}22∴n,n.an+=12an=21−−−−−+++−(Ⅱ)∵bb1211bb311nnb,∴()b12bbnnnnb.444⋅⋅4=(an+1)42=.①2(b12+++bbnn)−2n=nb.②2(bb12++++bbnn++1)−2(n+=1)(n+1)bn1②-①得,即.③2bn++11−=2(n+1)bnn−nbnbnn−=2(n−1)b+1∴.④(n+1)bnn++12−=2nb④-③,得,即.2nbn+−11=nbnn+nb2bn+−11=bbnn+∴数列是等差数列.{bn
本文档为【数列与不等式综合题(详解)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: ¥16.9 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
丹丹陪你去流浪
暂无简介~
格式:pdf
大小:442KB
软件:PDF阅读器
页数:0
分类:高中数学
上传时间:2021-09-30
浏览量:6