首页 矩阵及逆矩阵的求法

矩阵及逆矩阵的求法

举报
开通vip

矩阵及逆矩阵的求法矩阵及逆矩阵的求法 矩阵的可逆性与逆矩阵的求法 目录 摘要……………………………………………………………………………………1 第1章(矩阵…………………………………………………………………………..2 1.1矩阵的定义……………………………………………………………………2 1.2矩阵的运算……………………………………………………………………2 第2章(矩阵的可逆性及逆矩阵……………………………………………………..5 2.1矩阵的基本概念……………………………………………………………….5 2.2矩阵可逆的...

矩阵及逆矩阵的求法
矩阵及逆矩阵的求法 矩阵的可逆性与逆矩阵的求法 目录 摘要……………………………………………………………………………………1 第1章(矩阵…………………………………………………………………………..2 1.1矩阵的定义……………………………………………………………………2 1.2矩阵的运算……………………………………………………………………2 第2章(矩阵的可逆性及逆矩阵……………………………………………………..5 2.1矩阵的基本概念……………………………………………………………….5 2.2矩阵可逆的判断方法………………………………………………………….6 2.3矩阵可逆性的求法…………………………………………………………...10 第3章(逆矩阵的拓展.……………………………………………………………..17 3.1广义逆矩阵的引入.…………………………………………………….……17 3.2广义逆矩阵的定义及存在……………………………………………...……17 第4章(总结………………………………………………………………………….21 参考文献 ……………………………………………………………………………22 致谢 …………………………………………………………………………………23 附件:论文英文简介 矩阵的可逆性与逆矩阵的求法 [摘要]:矩阵理论是现代代数学的重要分支理论之一,它也为现代科技及现代经济理论研究提供不可或缺的数学支持。在线性代数研究中引入矩阵的目的之一就是为了研究线性方程组AX,B求解及更一般的矩阵方程求解提供数学工具,其中矩阵的可逆性及逆矩阵的求法是最主要的内容。本文从矩阵的基本概念及运算入手,主要探讨和归纳矩阵可逆性的四种判定方法和求逆矩阵的五种方法,并引进这一数学软件求逆矩阵的Matlab 程序,同时关注广义逆矩阵意义及求法。 [关键词]:矩阵 可逆性 逆矩阵 广义逆 求法 1 矩阵可逆性的判断和可逆矩阵的求法是矩阵理论学习的重点与难点,也是研究矩阵性质及运算中必不可少的一部分。本文在 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 和归纳判断矩阵的可逆性和逆矩阵的求法,给出了四种判断矩阵可逆的方法,其中有初等矩阵的应用,有行列式的应用,还有向量的线性无关和线性方程组的应用。逆矩阵的求法给出了五种方法:分别是行变换、 软件的解法,同时也讨论了广义逆矩阵的求列变换、伴随矩阵、分块矩阵法以及Matlab 法。对矩阵可逆性的判断与逆矩阵的求法将会给矩阵的学习带来很大的帮助。 第1章 矩 阵 1.1矩阵的定义 定义1 由个数排成一个行列的表 csttsij cc?c,,11121t,,cc?c,,21222t ,,???,,,,cc?cs1s2st,, 叫作一个行列(或)矩阵,c叫作这个矩阵的元素。 ts,tsij 定义2 矩阵的行(列)初等变换指的是对一个矩阵施行的下列变换: (i) 交换矩阵的两行(列); (ii) 用一个不等于零的数乘矩阵的某一行(列),即用一个不等于零的数乘矩阵的某一行(列)的元素; (iii) 用某一数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一元素后加到另一行(列)的对应元素上。 矩阵的初等变换在线性方程组求解,求矩阵的秩及求矩阵的逆矩阵方面都有重要的作用。 1.2矩阵运算 FFA,(a)的数与上一个矩阵的乘积aA指的是矩阵定义1 数域m,nm,naij (aa),求数与矩阵的乘积的运算叫作数与矩阵的乘法。 ij A,BA,(a),B,(b)(a,b)定义2 两个矩阵的和指的是矩阵,求两m,nm,nijijijij 2 个矩阵的和的运算叫作矩阵的加法。 要注意,我们只能把行数与列数都对应相同的两个矩阵相加。 由定义1和2,容易推出以下规律: A,B,B,A (A,B),C,A,(B,C) O,B,O,A a(A,B),aA,aB (a,b)A,aA,aB a(bA),(ab)A A,B,CF这里表示任意矩阵,而和表示中的任意数。 bm,na FAB定义3 数域上矩阵A,(a)与矩阵B,(b)的乘积指的是一个n,pm,nijij jjAB矩阵,这个矩阵的第行第列的元素c等于的第行的元素与的第列的对m,piiij应元素的乘积的和: j,1,2,?,pc,ab,ab,?,ab i,1,2,?,m, iji11ji22jinnj (AB)C,A(BC)矩阵的乘法的结合律: A(B,C),AB,AC矩阵的乘法和加法满足分配律: (B,C)A,BA,CA a(AB),(aA)B,A(aB)矩阵的乘法和数域矩阵的乘法: 特别注意:矩阵的乘法不满足交换律。 A一个阶方阵的次方有意义: rn r个,,,,,rA,AAA? 我们再约定 0A,I 定义4 设矩阵 m,n 3 aa?a,,11121n,,aa?a,,21222n A,,,???,,,,aa?am1m2mn,,把A的行变为列所得到的阶矩阵 n,m aa?a,,1121m1,,aa?a,,1222m2 A,,,???,,,,aa?a1n2nmn,, A叫作矩阵的转置。 矩阵的转置满足以下规律: TT (A),A TTT (A,B),A,B TTT (AB),BA TT (aA),aA 4 第2章 矩阵的可逆性及逆矩阵 2.1矩阵的基本概念 定义 令A是数域F上一个阶矩阵。若是存在F上阶矩阵B,使得 nn AB,BA,I BA那么A叫作一个可逆矩阵(或非奇异矩阵),而叫作的逆矩阵。 下面的几个概念有助于对矩阵可逆性及逆矩阵求法理解: n(,1)(1)设阶矩阵 aa?a,,11121n,,aa?a,,21222n A,,,???,,,,aa?an1n2nn,,以下等式成立: det,,,A若ij,,,,,aAaA?aA ,i1j1i2j2injno,若i,j;, det,,,A若ij,,,,,aAaA?aA ,1i1j2i2jninjo,若i,j;,这里是行列式detA中元素的代数余子式。 Aastst 由此 若是设 AA?A,,1112n1,,AA?A,,2122n2*A, ,,???,,,,AA?A1n2nnn,,那么 detA0?0,,,,0detA?0,,** AA,AA,,(detA)I ,,???,,,,00?detA,, *AA我们把矩阵叫作矩阵的伴随矩阵。 I(2)初等矩阵:对阶单位矩阵做一次初等变换所得到的矩阵: n 5 1,,,,?,, ,,1,, 0?1,, ,,1,, ,, P,???ij,,1,, ,,1?0,,1,, ,,?,,,,1,, 1,,,,?,, ,,1,, D(k),k,,i,,1,, ,,? ,,1,, 1,,,,?,, ,,1?k,, T(k), ??,,ij,,1,, ,,? ,,1,,将这三种方阵叫作初等矩阵。通过验算容易看出初等矩阵都是可逆的,并且它们的 逆矩阵仍是初等矩阵。 2.2矩阵可逆性的判断方法 依照不同的方式和性质,可以从下列几方面来判断矩阵的可逆性: A(1)阶矩阵可逆当且仅当它可以写成初等矩阵的乘积。 n AAII 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 :可以通过初等变换化为单位矩阵,就是说,可以通过初等变换化为, 也就是说,存在初等矩阵,使 E,?,E,E,?,E1ss,1t 6 A,E?EIE?E1ss,1t ,E?EE?E1ss,1t这是由初等矩阵的逆矩阵还是初等矩阵的性质推出的。 (用初等矩阵表示下面的方阵 例1 456,,,, A,222,, ,,004,,解:根据左行右列的规律: 456100456,,,,,,,,,,,, 010,010,010,,,,,, ,,,,,,001001001,,,,,, 100456456,,,,,,,,,,,,11,,1,010,222 ,,,,,,22 ,,,,,,001001001,,,,,, 100456456,,,,,,,,,,,, 010,222,222,,,,,, ,,,,,,004001004,,,,,, 100100456100,,,,,,,,,,,,,,,,11,010,,,1,010,010故矩阵 A,,,,,,,,22 ,,,,,,,,004001001001,,,,,,,, A(2)若矩阵行列式detA不为零,则其矩阵可逆。 A证明:将矩阵分解为 0A,E?EAE?E 1ss,1t其中是初等矩阵, E,?,E,E,?,E1ss,1t 由初等矩阵的性质可以知道,及矩阵乘积的行列式等于其各自行列式的乘积 detE,0i 0及得det(A),det(E)?det(E)det(A)det(E)?det(E),0,所以矩阵行列式detA不为1ss,1t A零时,其矩阵可逆。 AdetA综上所述:行列式不为零,则其矩阵可逆。 例2(判断下列矩阵是否可逆。 7 123,,,,13,, (2) (1),,B,023A,,,,,15,,,,000,, 13解:(1) ,所以A可逆。 detA,,5,3,2,015 123 (2) ,所以B不可逆。 detB,023,0,0,0,0,0,0,0 000 (3)含有个坐标的个向量组成的方阵A,若这个向量线性无关,则这个方阵A是nnn可逆。 证明:设个向量分别是,,…, ,,,nn12 且 , ,,,,,,aa?a,?,,,aa?a111121nnn1n2nn aa?a,,11121n,,aa?a,,21222n则 这个向量构成了一个阶方阵,A, nn,,???,,,,aa?an1n2nn,, 100?0,,,,010?0,, ,,A将矩阵 化为 ????0,, 0000,, ,,000?1,, 若其中有一个或者一个以上的,则向量,可以化为 0,,,,?,,,,k,,k,,?12nk1122 即向量是线性相关的一个矩阵。 ,,,,?,,,kann12n A与条件相矛盾。即矩阵可以化为单位矩阵,所以方阵可逆。 3FF例3( 令是任意的一个数域。中判断向量 ,,,,,, ,,1,2,3,,,0,4,0,,,0,0,8123 A的相关性,由此判断其构成的矩阵的可逆性。 a,b,c,F解:设存在,使得 ,, a,,b,,c,,0,0,0123 8 即 ,,,,,,,,a1,2,3,b0,4,0,c0,0,8,0,0,0 a,0,b,0,c,0因而有,则线性无关。则表明中得任意一个都不能,,,,,,,,,,123123 被另外两个表示。则其构成的矩阵 100?0,,,,010?0,, ,, ????0,, 0000,, ,,000?1,, 通过化简后每一行或列都含有一个数,及其行列式不为零。 (4)设一个齐次线性方程组的系数矩阵A是一个方阵,若此齐次线性方程组仅有零解, A则我们可以判定这个方阵可逆。 证明:矩阵来表示个元齐次方程组: AX,0nn 因为齐次线性方程组的变换中只有行变换,故不改变系数矩阵的可逆性。而只有零解使其行列式的秩等于其行数和列数。一个方阵构成的线性方程组若只有零解,则这个 AA矩阵可逆;若其有非零解,则矩阵不可逆。 236,,,,A例4( 矩阵是一个齐次线性方程组系数矩阵,证明矩阵可逆。 A,048,, ,,009,, xxx2,3,6,0,123,xx4,8,0证明:构造齐次线性方程组: 化简后得, ,23 ,x9,03, x,0,1,x ,0,2 ,x,03, A可逆。 即此齐次方程组只有零解,故矩阵 我们常常用方阵来解线性方程组,这种转换的方式可以使我们更好的理解矩阵的实质。 ABABAB(5)设与都是阶矩阵,证明:若可逆,则和都可逆;反之也对。 n det(AB),0det(AB),(detA),(detB)ABdetA,0证明:因为可逆,则 由,得, ABdetB,0,和都可逆 。 AC,,AB,,(6)设是一个n阶正方阵并且,分别为和阶可逆方阵, rr,s,nP,s,,0B,, 9 ,1,1,1,,AACB,,1,,是可逆矩阵 并且 则PP,,1,,0B,, 证明:我们由例(1)知道,方阵A是由个无关向量构成的,B是由个无关向量rs 构成的,则P则是由个无关向量构成的,有,得P是秩为的阶方阵。r,sr,s,nnn 则,所以P可逆。 detP,0 2.3 逆矩阵的求法 A 在判断一个阶矩阵可逆后,就可以求其逆矩阵。主要求逆矩阵的方法有: n 1.利用初等行变换求逆矩阵。 ,,如果阶矩阵A可逆,要求A的逆矩阵,首先由A作出一个矩阵,即AI,n,2nn A化为单位矩阵,那么右半部的其次对这个矩阵施以行初等变换,将它的左半部的矩阵 行初等变换,1,1,,,,AI,,,,,,,IAA单位矩阵就同时化为: A例5(求矩阵的逆矩阵 124,,,, A,342,, ,,111,, AA解: 先判断矩阵是否可逆,矩阵行列式 det(A),,4,0 AAI写下,并把单位矩阵写在的右边: 124100,,,,,,,, 342010,,,, ,,,,111001,,,, AI实行行的初等变换把变成,但是要记得每次对右边的矩阵施行同样的初等变 换。 第二行和第三行分别减去第一行的3倍和第一行,得 124100,,,,,,,,0,2,10,310 ,,,, ,,,,0,1,3,101,,,, 1用,乘以第二行,得 2 10 124100,,,,,,,,31 015,0,,,,22 ,,,,0,1,3,101,,,,第三行加上第二行,得 124100,,,,,,,,31 015,0,,,,22 ,,,,11002,1,,22,,第三行除以2,得 124100,,,,,,,,31 ,0150,,,,22 ,,,,111,001,,442,,第二行加上第三行的-5倍,第一行加上第三行的-4倍,得 ,120012,,,,,,,,351 ,010,,,,442 ,,,,111,001,,442,,第一行加上第二行的-2倍,得 11,,1003,,,,22,,,,351, 010,,,,442 ,,,,111,001,,442,, 11,,1241003,,,,,,22,,,,,,351,验证得: ,342010,,,,,,,442 ,,,,,,111111001,,,,,442,, 这种方法求逆矩阵的过程清晰易懂,是求逆矩阵的基本方法。 2.利用初等列变换求逆矩阵。 A,,A2n,n如果阶矩阵可逆,作一个的矩阵,,,然后对此矩阵施以初等列变换,使n,,I,, AA,,,,,1初等列变换AIAI,,,,矩阵化为单位矩阵,则同时即化为,即 ,,,,,,1,,,,II,,,, 456,,,,A,032例6(求矩阵的逆矩阵。 ,, ,,073,, det(A),,20,0AA解: 先判断矩阵是否可逆,矩阵行列式 11 ,并把单位矩阵写在的下边: 写下AAI 456,,,,032,, ,,073,, 100,, ,,010,,,,001,, 实行列初等变换把A变成,但是要记得每次对下边的矩阵施行同样的初等变换。I 第一列除以4, 156,,,,032,, ,,073,, 100,,4,,010,,,,001,,用第一列乘以-5加到第二列,用第一列乘以-6加到第三列, 100,,,,032,, ,,073,, 531,,,,442,,010,,,,001,,第二列除以3, 100,,,,012,, ,,7033,, 531,,,,4122,,1003,,,,001,,用第二列乘以-2加到第三列, 100,,,,010,, ,,750,33,, 512,,,,4123,,120,33,,,,001,, 12 3, 第三列乘以,5 100,,,,010,, ,7,013,, 512,,,4125,,12035,,3,,00,5,, 7用第三列乘以加到第二列, ,3 100,,,,010,, ,,001,, 2712,,,4205,,320,55,,73,,0,55,, 2712,456100,,,,,,4205,,,,,,32,验证得: 0 ,032010,,,,,,,55,,,,,,730730001,,,,,55,, 3.利用矩阵的伴随矩阵求逆矩阵。 1,1*AA定理:矩阵可逆当且仅当矩阵行列式detA,0且 A,AA ,1,1AAA,IA证明:必要性:由可逆,即存在,使,故 ,1detA,detA,detI,1 所以 detA,0 **AA,AA,detA,I充分性:因为 11**由于detA,0,所以 AA,AA,IdetdetAA 由可逆的定义有 1,1*A,A detA 这种求逆矩阵的方法计算量很大,理论上的作用较为重要的。 A,B,C例 7. 下列矩阵是否可逆,若可逆,求出其逆矩阵。 13 12323,1,,,,,,,,13,,,, ,,A,212C,,1,35B,,,,,,,24,,,,,,13315,11,,,, 解: ,故A可逆 detA,4,0 A,,3,A,,4,A,5,111213 A,3,A,0,A,,1,中各元素的代数余子式为, detA212223 A,1,A,4,A,,3,312333所以 ,331,,,,11,1* A,,404,A,,detA4,,5,1,3,, 13B=-20,所以矩阵可逆。即 ,detB,24 43,,,1,1 ,,,,B,,21,2,, 23,1 ,所以矩阵C不可逆。 detC,,1,35,0 15,11 4(分块矩阵求逆矩阵。 分块矩阵法是针对高阶矩阵的一种解法。首先我们要判断怎样对矩阵做分快更合适 求逆矩阵,尽量使各分块矩阵求逆的运算更简便,从而简化原矩阵求逆。 120000,,,,020000,, ,,004000,,例8. 求矩阵的逆矩阵。 A,000600,, ,,000023,,,,000004,, AA,,1112,,A解:将矩阵分成四块 A,,,AA2122,, 000600120000,,,,,,,,,,,,,,,,,000,023其中,020,,,000, AAAA,,,,,,,,11122122 ,,,,,,,,004000000004,,,,,,,, 14 AABB,,,,11121112,,,, 根据矩阵的乘法性质:AB,,,,,,,AABB21222122,,,, ABABABAB,,,,,,,,1111122111121222,, ,,,ABABABAB,,,,,2111222121212222,, ,1A,A,I要使,即要使 ,1,1AA,,AA,,1112,11112,,,,A,A,,,1,1,,,,AAAA2122,,2122,, ,1,1,1,1,,,,,,,,AAAAAAAA1111122111121222,,, ,1,1,1,1,,,,,,,,AAAAAAAA2111222121122222,, ,1,,A,A01111,,,,1,,0A,A2222,, ,1,1由 A,A,I,A,A,I11112222 1100.166700,,,,,,,,,,1,100.50,00.50.375,,,求得 AA,,,,1122 ,,,,000.25000.25,,,, 110000,,,,,00.50000,, ,,000.25000,1,,,故所求逆矩阵是 A0000.166700,, ,,00000.5,0.375,,,,000000.25,, 120000110000,,,,,,,,,02000000.50000,,,,,,,,004000000.25000,1,,,,,,,验证: AA0006000000.166700,,,,,,,,00002300000.5,0.375,,,,,,,,000004000000.25,,,, 15 100000,,,,010000,, ,,001000,, ,000100,, ,,000010,,,,000001,, 5.求解逆矩阵也可以用计算机软件来做。其步骤是先输入一个阶矩阵A,然后判断它n inv(A)的行列式是否为零,再用,即可得到你需要的逆矩阵。 下例就是用软件的解法求逆矩阵: Matlab 例9. 求矩阵A的逆矩阵 124,,,,A = 342,, ,,111,, 解: A,[1,2,4;3,4,2;1,1,1] A, 124 342 111 ,,det(A) ans, ,4 ,,inv(A) ,0.5000,0.50003.0000 0.25000.7500,0.25000 0.2500,0.25000.5000 0.50.53,,,,,,,1即 0.250.752.5 ,,A,, ,,0.250.250.5,,, 16 第3章 可逆性的拓展——广义逆矩阵 3.1广义逆矩阵的引入 1920年利用正交投影算子首次引入广义逆矩阵的概念,但未引起人们的E.H.Moore 注意。到1955年通过线性方程组的研究来定义广义逆矩阵,这才受到关注。R.Penrose 以后广义逆矩阵的研究得到迅速发展,并逐步在系统理论、优化问题和控制理论等许多 领域中被广泛地应用。后来证明与的定义方法,这就是: MoorePenrose m,nm,nA,CG,C设矩阵,如果存在矩阵,满足条件的一部分Penrosem,nm,n 或全部: (1)AGA,A (2)GAG,G H(3)(AG),AG H(4)(GA),GA A则称G为的一个广义逆矩阵。 3.2广义逆矩阵的定义及存在性 m,nm,nA,CG,C定义 设矩阵,如果存在矩阵满足条件 n,mm,n AGA,A ,A则称为矩阵的广义逆矩阵,并记做。 A值得注意对于任何矩阵,这样的G并不唯一,这一点从本例可见到: 1111,,,,若,,,则有 ,,,都有AGA,A,同时对任意的t,C,每个矩阵A,G,,,,,0000,,,, 1t,,都可作为G,使得AGA,A也成立。 ,,,,00,, m,nA,CA因此,对任何矩阵,就定义的广义逆矩阵集: n,m ,,A1,,,G,C|AGA,A ,AG并且集中任何一个矩阵都可以记为。 ,,A1 10,,,,例10(求矩阵的广义逆矩阵。 A,,,01,, 17 ab,,=,设,有 解: 由定义知,AGAG,,G,,,cd,, 210,,abcabbd,,,,,,,, ,,,2,,01acdcbcd,,,,,, 2,a,bc,1 ,ab,bd,0,故 ,ac,dc,0,2,,,1bcd, a,1a,,1,, ,,b,0b,0,,若时,有或,其中为任意的常数; b,0k,,c,kc,k,, ,,d,,1d,1,, a,1a,,1,, ,,b,kb,k,,若时,有,或其中为任意的常数; b,0c,0k,,c,0c,0,, ,,d,,1d,1,, a,m, ,b,n,m,1,n,0 有,其中的任意常数。 c,02,1,mn,cn, ,,,dm, m,nm,mn,nA,C(A),r(r,0)定理:设矩阵,秩且有可逆矩阵 P,C,Q,Cm,n r,(m,r)(n,r),r,,IX0IX,CY,C,,,,,,,,rr,,A,G,QP,,使,,,则 1 ,PAQ,,,,(n,r),(m,r),,YZ00ZC为任意矩阵,,,,,,,,, 0I,,r,1,1证明:由题设知,, A,PQ,,00,, GAG,A现在任取,应有,即要求: ,,G,A1 000III,,,,,,rrr,1,1,1,1,1,1,,,,,, PQGPQ,PQ,,,,,,000000,,,,,, r行WX,,11,,,1,1,,QGP,将作分块形式, 即 QGPYZ,,r列mr列,,,n,r行 并代入上式就推出 18 W,Ir IX,,r,,G,QP,,YZ,, IX,,r反之,任取这样的一个矩阵,则有 ,,,n,mGQP,,YZ,, 00IIXI,,,,,,rrr,1,1,1,1,,,,,,AGA,PQQPPQ,,,,,,00YZ00,,,,,, 0I,,r,1,1,,,PQ,A,,00,, 故证得。 n,m由本定理可得,当时,则;对阶非奇异矩,,A1,,,任意n,m矩阵B,CA,Onm,n ,1,1QAP阵,因存在阶可逆矩阵和,使得,即,则有 A,PQPAQ,Inn ,1,,,,,, A1,QIP,QP,,,An ,,1AAA这 说明 关于失联党员情况说明岗位说明总经理岗位说明书会计岗位说明书行政主管岗位说明书 非奇异家族中对的广义逆矩阵是唯一的,即为。 例11(设矩阵 1011,,,,,AA,0222 求,并给出一个。 ,,A1,, ,,,1453,, 0I,,rP,Q解:为得,,中的,对下列矩阵施行初等行变换及初等列变换,化为A,PQ,,00,, 0I,,r形式,即 ,,,,00,, 1000100,,,,010001/20,, ,,00001,21AI,,行列,,3101,1,, ,,,,I0,,?,,4,,01,1,1O,,0010,,,,0001,,于是 19 101,1,,100,,,,,,01,1,1,, P,01/20Q,,,,,0010,,,,1,21,,,,0001,,因此 ,,10101,1x,,,,1,,,,100,,,,,,,,Cxyz为中任意数0101,1,1x,,,,,,iiji21,01/20 ,,A,,,,,,,,0010yyz,,1,2ij11121,,,,,,,,1,21,,,,,,,,0001yyz,,21222,,,, ,A并且当令时,就得一个最简单的如下: x,y,z,0iiji 101,1100,,,,,,,,100,,,,01,1,1010,,,,,A,01/20,,,,,,0010000,,,,,,1,21,,,,,,0001000,,,, 100,,,,01/20,,,,,000,,,,000,, 关于广义逆矩阵的求法和应用还有待更深入的探究,特别是它与具体矩阵的逆矩阵的联系更有学习的意义。 20 第4章 总结 本文主要讨论了矩阵可逆的判定条件和求逆矩阵的基本方法。矩阵可逆性是矩阵乘法运算的逆运算类似数的除法运算的前提,求可逆矩阵的逆矩阵的方法主要就是两类:一类是以矩阵的初等变换为基础的方法,是求逆矩阵的一般方法,并且可以推广到分块矩阵去解决高阶三角形的矩阵求逆。另一类就是利用矩阵与其伴随矩阵的乘积,加上行列式的依行依列展开式的性质来求矩阵的逆矩阵的方法,此类方法主要是理论作用较大,而具体求逆矩阵的计算量太大,不易对高阶矩阵求逆。随着社会的进步和发展,计算机中在处理大的数据时,常运用计算方法得出我们需要的结果,避免了在数学Matlab 计算中的复杂性,这给矩阵理论的深入研究和实际应用提供了发展空间,同时也需要我们进一步的学习和探究。 21 参考文献 【1】张禾瑞、郝鈵新. 高等代数[M]第五版.北京:高等教育出版社. 2007年 【2】杜之韩 刘丽 吴曦.线性代数[M]第三版.成都:西南财经大学出版社. 2005年 【3】陈治中.线性代数[M].北京:科学出版社. 2008年 【4】董霖. 使用详解[M].北京:科学出版社. 2008年 Matlab 【5】魏洪增.矩阵理论与方法[M]. 北京:电子工业出版社. 2008年 22
本文档为【矩阵及逆矩阵的求法】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_729658
暂无简介~
格式:doc
大小:43KB
软件:Word
页数:20
分类:工学
上传时间:2017-09-21
浏览量:442