首页 排列组合例题整理

排列组合例题整理

举报
开通vip

排列组合例题整理排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法, 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 n!rP,n ()!nr, rP也可写成P(n,r)其中n表示总共...

排列组合例题整理
排列组合基础知识讲座 首先看一道简单的例MATCH_ word word文档格式规范word作业纸小票打印word模板word简历模板免费word简历 _1716272135926_0 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法, 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列 公式 小学单位换算公式大全免费下载公式下载行测公式大全下载excel公式下载逻辑回归公式下载 的定义如下 n!rP,n ()!nr, rP也可写成P(n,r)其中n表示总共的元素个数,r表示进行排列n 的元素个数,~表示阶乘,例如6~=,5!= ,654321,,,,,54321,,,,但要特别注意1~=0~=1。假设n=5,r=3,则 5!54321,,,,,,60P(5,3)= (53)!21,, 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 4!4321,,,,,12P(4,2)= (42)!21,, 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中 3!321,, ( 计算取出3个进行排列,所以r=3。根据公式P(3,3)=,,6(33)!1, 的时候注意0~=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 3!321,,P(3,2)=,,6 ( 计算的时候注意1~=1) (32)!1, 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 n!rC,n rnr!!,,, rC也可写成C(n,r)其中n表示总共的元素个数,r表示进行组合n 654321,,,,,54321,,,,的元素个数,~表示阶乘,例如6~=,5!= ,但要特别注意1~=0~=1。假设n=5,r=3,则 5!54321,,,,,,30C(5,3)= 2!(53)!(21)(21),,,, 另外,为便于计算,还有个公式请记住 rnr,CC, nn 例如C(6,2)=C(6,4) 在例4里,总共的元素个数是3 ,所以n=3,从所有元素中任意取出2个进行组合,所以r=2。根据公式 3!321,,,,3C(3,2)= ( 计算的时候注意1~=1) 2!(32)!21,, 因此有3种取法。 基础知识讲完后,我们进行一次随堂模拟考试,下面是公考中曾经出现过的题目 考试题1. 林辉在自助餐店就餐,他准备挑选三种肉类的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法, 解答: 这里涉及到了解答排列组合问题中常用到一种方法:分步法。即把完成一件事情的过程分成几步,每一步的可供选择的 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 数相乘就是总的可供选择的方案数。例如完成一件事情需要两步,第一步有2种选择,第二步有3种选择,如果不考虑完成顺序(即先完成第一步再完成第二步,或先完成第二步再完成第一步效果一样),则总的选择数为2乘3等于6。 本题中,就餐分成三步,第一步挑选肉类,第二步挑选蔬菜,第三步挑选点心。在每一步的挑选中,由于挑选的物品是同一种类(例如从四种蔬菜中挑选两种,虽然种类不同,但挑出的仍然是蔬菜,与挑选时的顺序无关),所以每一步的挑选是组合问题。 3!321,,,,3第一步的选择数为C(3,1)= , 2!(32)!21,, 4!4321,,,,,6 第二步的选择数为C(4,2)= 2!(42)!2121,,,, 4!4321,,,第三步的选择数为C(4,1)= ,,41!(41)!1321,,,, 由于不考虑挑选食物的顺序,所以总共有 种 CCC(3,1)(4,2)(4,1)36472,,,,,, 考试题2. 将五封信投入3个邮筒,不同的投法共有() 解答: 这个题也采用分步法。分成五步,第一步将第一封信投入邮筒,第二步将第二封信投入邮筒,„„第五步将第五封信投入邮筒。在每一步中,每一封信都有三个邮筒的选择,即可选择数是3。由于结果与五封信的投递次序无关,所以共有 33333243,,,,, 考试题3: 从编号为1-9的队员中选6人组成一个队,问有多少种选法, 解答: 这个题和例题1有相似处,但要注意队与队之间的区别只与组成队员有关,而与队员的排列顺序无关。例如,1,2,3,4,5,6号队员组成一队,不论他们怎么排列,123456和654321仍然是同一只队。因为和位置无关,所以这是组合问题。 总共的元素个数是9 ,所以n=9,从所有元素中任意取出6个元素进行组合,所以r=6。根据公式 9!,84C(9,6)= 6!(96)!, 因此有84种取法。 (注意:考试时只要求知道计算公式C(9,6),不要求具体计算) 专家解析公务员考试:排列组合问题之插板法 文章摘要:插板法是用于解决"相同元素"分组问题,且要求每组均"非空",即要求每组至少一个元素;若对于 "可空"问题,即每组可以是零个元素,又该如何解题呢, 首先给各位公务员考友看一道题目: 例1(现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法? 【解析】:题目中球的分法共三类: 第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。其分法种数为 。 第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。其分法种数 。 第三类:有1个班分到4个球,其余的6个班每班分到1个球。其分法种数 。 所以,10个球分给7个班,每班至少一个球的分法种数为: 。 由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境--插板。 将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用"档板"把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟"档板"分配物品的方法称之为插板法。 由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个"档板"(6个档板可把球分为7组),其方法种数为 。 由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件: ?所要分的元素必须完全相同; ?所要分的元素必须分完,决不允许有剩余; ?参与分元素的每组至少分到1个,决不允许出现分不到元素的组。 下面再给各位看一道例题: 例2(有8个相同的球放到三个不同的盒子里,共有( )种不同方法. A(35 B(28 C(21 D(45 【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的"插板法",而忽略了"插板法"的适用条件。例2和例1的最大区别是:例1的每组元素都要求"非空",而例2则无此要求,即可以出现空盒子。 其实此题还是用"插板法",只是要做一些小变化,详解如下: 设想把这8个球一个接一个排起来,即 ,共形成9个空档(此时的空档包括中间7个空档和两端2个空档),然后用2个档板把这8个球分成3组,先插第一个档板,由于可以有空盒,所以有9个空档可以插;再插第二个板,有10个空档可以插,但由于两个板是不可分的(也就是说当两个档板相邻时,虽然是两种插法,但实际上是一种分法),所以共 种。 例3((1)已知方程 ,求这个方程的正整数解的个数。 (2)已知方程 ,求这个方程的非负整数解的个数。 【解析】:(1)将20分成20个1,列出来:1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1在这20个数中间的19个空中插入2个板子,将20分成3部分,每一部分对应"1"的个数,按顺序排成 ; ; ;即是正整数解。故正整数解的个数为 ,解法非常简单。 :(2)此题和例2的解法完全相同,请各位考友自己考虑一下。 【王永恒提示】:今后我们利用"插板法"解决这种相同元素问题时,一定要注意"空"与"不空"的分析,防止掉入陷阱。例3的两题相比较,可以很明显地看出"空"与"不空"的区别。 【王永恒总结】: "非空"问题插板法原型为:设有 个相同元素,分成 ( )组,每组至少一个元素的分组方法共有 ;"可空"问题插板法问题原型为:设有 个相同元素,分成 ( )组,则分组方法共有 种方法。 练习1(有10级台阶,分8步走完。每步可以迈1级、2级或3级台阶,有多少中走法,(答案为 ) 老子曰:夫物芸芸,各复归其根,归根曰静,静曰复命。在平时的学习中,我们应当学会寻找共性,寻找根源,从本质上理解归纳各种问题。 在介绍排列组合方法之前 我们先来了解一下基本的运算公式~ C5取3,(5×4×3)/(3×2×1) C6取2,(6×5)/(2×1) 通过这2个例子 看出 CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作为分母 P53,5×4×3 P66,6×5×4×3×2×1 通过这2个例子 PMN,从M开始与自身连续N个自然数的降序乘积 当N,M时 即M的阶层 排列、组合的本质是研究“从n个不同的元素中,任取m (m?n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有2: 其一是看问题是有序的还是无序的,有序用“排列”,无序用“组合”; 其2是看问题需要分类还是需要分步,分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:?完成这件事的任何一种方法必须属于某一类;?分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算很终完成. 两 个原理的区别在于一个和分类关于,一个与分步关于.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1(有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ?“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻很常用的方法. ?“不邻”问题在解题时很常用的是“插空排列法”. ?“在”与“不在”问题,常常涉及特殊元素或特殊?元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2(有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3( 在处理排列、组合综合题时,通过解析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的很基本的,也是很重要的思想方法. ************************************************************************ ***** 提供10道习题供大家训练 1、三边长均为整数,且很大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 ------------------------------------------------------ 【解析】 根据三角形边的原理 两边之和大于第三边,两边之差小于第三边 可见很大的边是11 则两外两边之和不能超过22 因为当三边都为11时 是两边之和很大的时候 因此我们以一条边的长度开始解析 如果为11,则另外一个边的长度是11,10,9,8,7,6,。。。。。。1 如果为10 则另外一个边的长度是10,9,8。。。。。。2, (不能为1 否则两者之和会小于11,不能为11,因为第一种状况包含了11,10的组合) 如果为9 则另外一个边的长度是 9,8,7,。。。。。。。3 (理由同上 ,可见规律出现) 规律出现 总数是11,9,7,。。。。1,(1,11)×6?2,36 2、 (1)将4封信投入3个邮筒,有多少种不同的投法, ------------------------------------------------------------ 【解析】 每封信都有3个选择。信与信之间是分步关系。比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3,3^4 (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法, ------------------------------------------------------------- 【解析】跟上述状况类似 对于每个旅客我们都有4种选择。彼此之间选择没关于系 不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道很后一个旅客也是4种可能。根据分步原则属于乘法关系 即 4×4×4,4^3 (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法, ------------------------------------------------------------- 【解析】分步来做 第一步:我们先选出3本书 即多少种可能性 C8取3,56种 第2步:分配给3个同学。 P33,6种 这 里稍微介绍一下为啥是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的状况,很后一个同学没有选择。即3×2×1 这是分步选择符合乘法原则。很常见的例子就是 1,2,3,4四个数字可以组成多少4位数, 也是满足这样的分步原则。 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩。 所以该题结果是56×6,336 3、 七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种, (3600) --------------------------------------------- 【解析】 这个题目我们分2步完成 第一步: 先给甲排 应该排在中间的5个第2步: 剩下的6个人即满足P原则 P66,720 所以 总数是720×5,3600 (2)某乙只能在排头或排尾的不同排法有多少种, (1440) ------------------------------------------------- 【解析】 第一步:确定乙在哪个第2步:剩下的6个人满足P原则 P66,720 则总数是 720×2,1440 (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种, (3120) --------------------------------------------------- 【解析】特殊状况先安排特殊 第一种状况:甲不在排头排尾 并且不在中间的状况 去除3个第2种状况:甲不在排头排尾, 甲排在中间则 剩下的6个因为是分类讨论。所以很后的结果是两种状况之和 即 2400,720,3120 (4)甲、乙必须相邻的排法有多少种, (1440) ----------------------------------------------- 【解析】相邻用捆绑原则 2人变一人,7个第1: 选第2: 选出来的2个则安排甲乙符合状况的种数是2×6,12 剩下的5个人即满足P55的规律,120 则 很后结果是 120×12,1440 (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种,(2520) ------------------------------------------------------- 【解析】 这个题目非常好,无论怎么安排甲出现在乙的左边 和出现在乙的右边的概率是一样的。 所以我们不考虑左右问题 则总数是P77,5040 ,根据左右概率相等的原则 则排在左边的状况种数是5040?2,2520 4、用数字0,1,2,3,4,5组成没有重复数字的数. (1)能组成多少个四位数, (300) -------------------------------------------------------- 【解析】 四位数 从高位开始到低位 高位特殊 不能排0。 则只有5种可能性 接下来3个 (2)能组成多少个自然数, (1631) --------------------------------------------------------- 【解析】自然数是从个位数开始所有状况 分状况 1位数: C6取1,6 2位数: C5取2×P22,C5取1×P11,25 3位数: C5取3×P33,C5取2×P22×2,100 4位数: C5取4×P44,C5取3×P33×3,300 5位数: C5取5×P55,C5取4×P44×4,600 6位数: 5×P55,5×120,600 总数是1631 这里解释一下计算方式 比如说2位数: C5取2×P22,C5取1×P11,25 先从不是0的5个数字中取2个排列 即C5取2×P22 还有一种状况是从不是0的5个数字中选一个和 0搭配成2位数 即C5取1×P11 因为0不能作为很高位 所以很高位只有1种可能 (3)能组成多少个六位奇数, (288) --------------------------------------------------- 【解析】高位不能为0 个位为奇数1,3,5 则 先考虑低位,再考虑高位 即 3×4×P44,12×24,288 (4)能组成多少个能被25整除的四位数, (21) ---------------------------------------------------- 【解析】 能被25整除的4位数有2种可能 后2位是25: 3×3,9 后2位是50: P42,4×3,12 共计9,12,21 (5)能组成多少个比201345大的数, (479) ------------------------------------------------ 【解析】 从数字201345 这个6位数看 是很高位为2的很小6位数 所以我们看很高位大于等于2的6位数是多少, 4×P55,4×120,480 去掉 201345这个数 即比201345大的有480,1,479 (6)求所有组成三位数的总和. (32640) --------------------------------------------- 【解析】每个百位上的和:M1=100×P52(5 4 3 2 1) 十位上的和:M2=4×4×10(5 4 3 2 1) 个位上的和:M3=4×4(5 4 3 2 1) 总和 M,M1 M2 M3=32640 5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查. (1)“其中恰有两件次品”的抽法有多少种, (152096) 【解析】 也就是说被抽查的5件中有3件合格的 ,即是从98件合格的取出来的 所以 即C2取2×C98取3,152096 (2)“其中恰有一件次品”的抽法有多少种, (7224560) 【解析】同上述解析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个 C2取1×C98取4,7224560 (3)“其中没有次品”的抽法有多少种, (67910864) 【解析】则即在98个合格的中抽取5个 C98取5,67910864 (4)“其中至少有一件次品”的抽法有多少种, (7376656) 【解析】全部排列 然后去掉没有次品的排列状况 就是至少有1种的 C100取5,C98取5,7376656 (5)“其中至多有一件次品”的抽法有多少种, (75135424) 【解析】所有的排列状况中去掉有2件次品的状况即是至多一件次品状况的 C100取5,C98取3,75135424 6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( ) (A)140种 (B)84种 (C)70种 (D)35种 -------------------------------------------------------- 【解析】根据条件我们可以分2种状况 第一种状况:2台甲,1台乙 即 C4取2×C5取1,6×5,30 第2种状况:1台甲,2台乙 即 C4取1×C5取2,4×10,40 所以总数是 30,40,70种 7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种. ------------------------------------------------------- 【解析】至少有3件 则说明是3件或4件 3件:C4取3×C46取2,4140 4件:C4取4×C46取1,46 共计是 4140,46,4186 8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( C ) (A)1260种 (B)2025种 (C)2520种 (D)5040种 ,,,,,,,,,,,,,,,,,,,,,,,,,,, 【解析】分步完成 第一步:先从10人中挑选4人的方法有:C10取4,210 第2步:分配给甲乙并的工作是C4取2×C2取1×C1取1,6×2×1,12种状况 则根据分步原则 乘法关系 210×12,2520 9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__ C(4,12)C(4,8)C(4,4) ___种 ,,,,,,,,,,,,,,,,,,,,,,,, 【解析】每个路口都按次序考虑 第一个路口是C12取4 第2个路口是C8取4 第三个路口是C4取4 则结果是C12取4×C8取4×C4取4 可能到了这里有人会说 三条不同的路不是需要P33吗, 其实不是这样的 在我们从12人中任意抽取人数的时候,其实将这些分类状况已经包含了对不同路的状况的包含。 如果再×P33 则是重复考虑了 如果这里不考虑路口的不同 即都是相同路口 则状况又不一样 因为我们在分配人数的时候考虑了路口的不同。所以很后要去除这种可能状况 所以在上述结果的状况下要?P33 10、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法, 990 ,,,,,,,,,,,,,,,,,,,,,,,, 【解析】 这是排列组合的一种方法 叫做2次插空法 直接解答较为麻烦,故可先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插10个空位,有P(10,1)种方法;用很后一个节目去插11个空位,有P(11,1)方法,由乘法原理得:所有不同的添加 讨论一个非常经典的题目 方法为P(9,1)×P(10,1)×P(11,1)=990种。 6个学生平均分成3组,有多少种分法, 6个学生平均分到3个不同的班级,有多少种分法, 讨论中出现了2个做法, 其一:是 ,(,,,)×,(,,,)=,, 其二:是 ,(,,,)×,(,,,),,(,,,),,, 现在我们就来讨论是否需要考虑 ×,(,,,) 还是要除以 ,(,,,) 我们先从简单的, 和 ,说起。 ,是排列组合当中表示选取的意思。 整个核心是“选取”,所以不 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 到排列。 如 从,,,,,这三个数字中选出,个数字,有几种选法, 我们就可以简单的运用,(,,,) ,, 而,则有所不同,,除了选取还需要排列。 比如 从,,,,,这 三个数字中选出,个数字,可以组成多少个两位数, 我们刚才说过了 排列是建立在选取的基础上,,分步看,就是先选取 后排列。 如此题 ,(,,,)×,(,,,),,(,,,),, 现在我们就来看原题。 6个学生平均分成3组,有多少种分法, 我们知道这里的分组 是相同的, 也就是说我无需考虑排列的问题,只管选取。 这个时候有人就会问了 正确答案不就是 ,(,,,)×,(,,,)=,,吗, 其实不然~ 下面我们继续来探讨。为什么不然 我们最熟悉的就是 数字排列。 如 ,,,,,,,,, 这,个数字可以组成多少个,位数, 我们都知道是 ,(,,,) ,,,,,,(,,,)×,(,,,)×,(,,,)×,(,,,)×,(,,,) 这样一分解大家也许就明白了:,就是分步选取,换句话说,就是分步选取,包含了排列。 那么我们回头看 ,(,,,)×,(,,,)=,, 这里就必定包含了对三个组的排列 所以我们必须要,除~ 即答案是 ,,,,(,(,),,, 6个学生平均分到3个不同的班级,有多少种分法, 再看这个题目,我们发现其实,分组不同了, 那么我们只需做好分步选取就,,了,无需再去重复的排列了, 即答案就是 ,(,,,)×,(,,,)=,, 下面我再来举个简单的例子反驳 如 ,个人叫,,,他们分成,组 每组,人。有多少种, ,,, 就,种, 因为组不区分, ,,和,,是一回事。 ,(,,,)×,(,,,)显然这里就是错误的了 可能很多考生会觉得,公务员考试的题目都应该是极其严肃的,但事实上并不尽然。在行政职业能力测验的数学运算部分,有一部分题目略显与众不同,带有比较强的智力性和趣味性。这些题目有个共同的特点,在计算上通常并不复杂,但往往要求考生有比较严密的思维和比较灵活的想法,与传统的数学题目相比,更多的带有一种“脑筋急转弯”的性质。而且对于某些题目,仅仅具备数学知识还不够,需要考生掌握一定的生活相关常识才能够求解。通过对历年国家公务员考试真题的研究总结,专家发现,曾经有如下种类的智力型问题在公务员考试中反复涉及到。 一、抽屉原理类 “抽屉原理”也称“鸽巢原理”,最早由德国数学家狄利克雷提出,在组合数学中有非常重要的地位。如果用通俗一点的语言来描述,抽屉原理最常见的情 形是:把多于n个的物体放到n个抽屉里,那么至少有一个抽屉里面要放有2个或2个以上的物体。在国家公务员考试中,抽屉原理类型的题目便曾经多次出现,其特征是,在题干中有“至少”和“保证”这两个词或类似的字样,比如: 【例题1】2004年国家公务员考试B卷48题。 有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒( ) A.3 B.4 C.5 D.6 【答案】:C。 从“至少”和“保证”两个词我们可以判断,这是一道典型的抽屉原理问题。解决此类问题,有一个总体上的原则,就是始终考虑最坏的情况。对于本题,最坏的情况就是每种颜色的珠子恰好各摸出一粒,没有任何两粒的颜色相同。这时只要再摸出一粒,不管是何种颜色,都能保证有两粒颜色相同的珠子了。对于任何的抽屉原理问题,实际上都是遵循这样一个大的原则来求解。 【例题2】2007年国家公务员考试49题。 从一副完整的扑克牌中至少抽出( )张牌才能保证至少6张牌的花色相同。 A.21 B.22 C.23 D.24 【答案】:C。 本题也可以很轻易的判断出属于抽屉原理类,依照“最坏的情况”来考虑,应该是每种花色的牌恰好都抽出了5张。这里涉及到生活中的小常识,首先考生要知道一副扑克牌中有四种花色的牌,第二这道题有一个小小的陷阱,那就是一副完整的扑克牌中还有两张大小王。所以如果考虑不够全面的话,本题很可能得到21张的答案,实际上真正最坏的情况就是连大小王也摸到了,需要摸23张才能保证有6张牌花色相同。 二、排列组合类 提到排列组合问题,有一部分考生可能要开始头疼了,因为这在公务员考试中是一个“超纲”知识点。在前面的系列文章中我们曾经提到过,绝大部分数学题目的基本解题知识点都囊括在初二数学大纲中,但排列组合是高中数学才接触到的内容。尽管如此,却并不意味着这一类型的题目很难,因为对于排列数和组合数的复杂计算性质,在解题中基本上是用不到的。对于绝大多数的排列组合题目,只要掌握了乘法原理和加法原理两种简单的方法就能够解决,稍复杂的题目需要用到最基本的组合数。首先来交代一下,什么叫做乘法原理和加法原理。 乘法原理,也叫分布计数原理,是指完成一件事需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,„„,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2ׄ„×mn种不同的方法。 加法原理,也叫分类计数原理,是指完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,„„,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+„„+mn种不同的方法。 在具体题目中,到底应该应用乘法原理还是加法原理,关键是看完成整个事件是否有步骤之分。必须按照步骤先后顺序进行的,应适用乘法原理;各办法之间互斥,不用分成步骤完成的,应适用加法原理。对于某些题目,还可能需要将两种原理组合应用。 【例题3】2004年国家公务员考试B类44题。 把4个不同的球放入4个不同的盒子中,有多少种放法( ) A.24 B.4 C.12 D.10 【答案】:A。 因为球需要一个一个的放,只有将4个球全部放入盒子中才算完成,因此存在先后的步骤之分,应采用乘法原理。第一个球放到盒子中有4种不同的放法,第二个球只剩了3个盒子可以放,因而有3种放法,依此类推,放第三个球有2种放法,放第四个球只有1种放法,总的放法数目应该是各放法的乘积,即 4×3×2×1=24种 【例题4】2004年国家公务员考试A类47题。 林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同的选择方法( ) A.4 B.24 C.72 D.144 【答案】:C。 首先明确,三种食物要依次拿取,并且全部拿取之后才能算作挑选完毕,因此在肉类、蔬菜、点心三种食物之间应该应用乘法原理,以“×”连接。接下来考查每种食物的选择方法,在三种肉类中挑选一种只有3种方法,四种点心中挑一种也只有4种方法,本题的关键在于蔬菜。挑选第一种蔬菜可以有4种方法,再挑选第二种蔬菜有3种方法,但挑选蔬菜的方法却不是4×3=12种,因为题目中有一句话,“不考虑食物的挑选次序”。打个比方,先挑选土豆后挑选胡萝卜, 与先挑选胡萝卜后挑选土豆,在本题中视作同一种选择方法,也就是说挑选蔬菜的方法只有6种。因此总的选择方法是 4×3×6=72种 【例题5】2005年国家公务员考试一卷48题。 从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有( )种不同的选法 A.40 B.41 C.44 D.46 【答案】:C。 要使三个数的和为偶数,可以有两种情况,即三个数都是偶数或者一个是偶数两个是奇数,明显在这两种情况之间应该适用加法原理,接下来分别考查这两种情况。第一种情况,在四个偶数中选择三个,和在四个偶数中只选择一个的方法数其实是一致的,应该有4种。第二种情况,在四个偶数中选择一个有4种方法,在五个奇数中选择两个的方法数与例题4中类似,应该有(5×4)/2=10种,所以第二种情况共有4×10=40种方法。因此总的选择方法数应为4+40=44种。 对于2009年之前的国家公务员考试,涉及到排列组合的数学问题,只需要应用这两个原理就完全可以得到解决。而在2009年国家公务员考试中,这一要求有了小小的提升,需要考生掌握最基本的组合数的性质才可以。
本文档为【排列组合例题整理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_348501
暂无简介~
格式:doc
大小:46KB
软件:Word
页数:21
分类:企业经营
上传时间:2017-09-07
浏览量:338